Motivation 0000	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000

Explaining the Stars: Weighted Multiple-Instance Learning for Aspect-Based Sentiment Analysis

Nikolaos Pappas and Andrei Popescu-Belis

Idiap Research Institute, Martigny, Switzerland

EMNLP 2014, Doha, Qatar

October 26, 2014

Motivation ●○○○	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000
Aspect-ba	sed sentiment an	alysis		

Fine-grained sentiment analysis i.e. determining opinions expressed on different aspects of products:

review segmentation

detect which sentences refer to which aspect (discovered or fixed)

aspect-rating (or sentiment) prediction

estimate sentiment towards each aspect (unsupervised, supervised)

review summarization

create summary of aspect-sentiments with representative sentences

Gerry Milton, ON, Canada 10-05-13

Overall	★★☆☆☆
Performance	★★★★ ☆
Story	****

"Misleading as Sci-Fi" (review of Solaris narrated by Allesandro Juliani on Audible)

This book started with immense potential as a unique sci-fi story, but a some point it turned into a love story and philosophical treatise. I would have enjoyed it more if he finished any one of these genres but it just ended with a thud and many loose ends. I agree with many others that although written 50 years ago, Mr. Lem was ahead of his time and despite some outdated technical items, the book shows excellent technical creativity. I was also impressed with extensive descriptions of this fantasy world. Although in the end, his complex ideas and descriptions of the alien life forms built expectations of some unique world which would leave me dumbfounded then nothing... As for the narration, Allesandro was great and I now I want to watch BSG again to see his other work. I thought about returning it but then again maybe I have to read it again to see what I missed, since others went gaga over it - maybe not! Come on Rothuss and GRRM - we cart wait forever!

Motivation ○●○○	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000
The proble	em: aspect-rating	; prediction		

- typically formulated as traditional supervised multi-label learning: given D = {(x_i, y_i) | i = 1...m}, x_i ∈ ℝ^d and y_i ∈ ℝ^k, find Φ_k : X → Y_k
- representations x_i for sentiment analysis:
 - feature engineering (bow, n-grams, topic models and more)
 - feature learning (neural networks)

- $\rightarrow\,$ treat a text globally and ignore the weak nature of the labels
- \rightarrow suffer polymorphism and part-whole ambiguities (feeble to noise)
- $\rightarrow\,$ offer few or no means for interpretation (how to explain the stars?)

Motivation ○○●○	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000
Proposed	solution			

- aspect-rating prediction as multiple-instance learning problem
- Approximation of the paragraph of the
- 3 an efficient model to learn to predict contributions and ratings

Motivation ○○○●	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000
Outline of	f the talk			

2 Multiple-instance learning

3 The proposed model

Conclusion 5

Motivation 0000	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000
Outline of	f the talk			

2 Multiple-instance learning

- each text is a *bag* described by many data points or *instances*: given $\mathcal{D} = \{(b_{ij}, y_i) \mid i = 1 \dots n, j = 1 \dots n_i\}, b_{ij} \in \mathbb{R}^d \text{ and } y_i \in \mathbb{R}^k, \text{ find}$ $\Phi_k : \mathcal{B} \xrightarrow{?} \mathcal{X} \to \mathcal{Y}_k, \text{ where } \mathcal{X} = \{x_{ik}\}, x_{ik} \in \mathbb{R}^d \text{ is unknown}$
- instances b_{ij} are represented as before but on different levels: paragraph-level, <u>sentence-level</u> or phrase-level

Flexible (uncovers structure) and cheaper (operates on coarse labels).

Motivation 0000	Multiple-instance learning ○●○	The proposed model	Experiments 000000	Conclusion
MIL assur	mptions			

Aggregated instances: sum or average instances

$$f \leftarrow D_{agg} = \{(x_i, y_i) \mid i = 1, ..., m\}$$
$$\hat{y}(B_i) = f(x_i) = f(mean(\{b_{ij} \mid wj = 1, ..., n_i\}))$$
(1)

2 Instance-as-example: each instance is labeled by its bag's label

$$f \leftarrow D_{ins} = \{ (b_{ij}, y_i) \mid j = 1, \dots, n_i; i = 1, \dots, m \}$$
$$\hat{y}(B_i) = mean(\{f(b_{ij}) \mid j = 1, \dots, n_i\})$$
(2)

3 Prime instance: a single instance is responsible for its bag's label

$$\forall i \ b_i^p = \underset{j}{\operatorname{argmax}} |y_i - f(b_{ij})|$$
$$f \leftarrow D_{pri} = \{(b_i^p, y_i) \mid i = 1, \dots, m\}$$
$$\hat{y}(B_i) = mean(\{f(b_{ij}) \mid j = 1, \dots, n_i\})$$
(3)

Motivation	Multiple-instance learning	The proposed model	Experiments	Conclusion	
0000	○○●		000000	000	
Weighted-MIL assumptions					

Instance relevance: each instance contributes unequally to its bag's label

- (Wagstaff 2007) applied to crop yield modeling
- (Zhoua 2009) treats instances in an non-i.i.d. way that exploits relations among instances
- (Wang 2011) defines instance-specific distance which is derived by comparisons with training data (it is not directly learned)
- $\rightarrow\,$ no model to estimate instance relevances of unseen bags
- $\rightarrow\,$ prohibitive complexity for large feature spaces or number of bags
- $\rightarrow~$ most works have focused on classification

Motivation 0000	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion 000
Outline of	the talk			

1) Motivation

Multiple-instance learning

3 The proposed model

5 Conclusion

Motivation	ation Multiple-instance learning			The proposed model		Experiments	Conclusion
0000	000			●○○		000000	000
Proposed	model:	main	idea	and	assumptio	on	

A new weighted multiple-instance learning model for text regression tasks:

- models both instance relevances and target ratings (applicable to prediction and interpretable)
- learns an optimal method to aggregate instances, rather than a pre-defined one (less simplified than previous assumptions)
- supports high dimensional spaces as required for text (computationally efficient)

Assumption: the point x_i is a convex combination of the points in the bag, in other words B_i is represented by the weighted average of its instances b_{ij}

$$x_{i} = \sum_{j=1}^{n_{i}} \psi_{ij} b_{ij} \text{ with } \psi_{ij} \ge 0 \ \forall i, j \text{ and } \sum_{j=1}^{n_{i}} \psi_{ij} = 1$$
(4)

Motivation 0000	Mul ooc	Multiple-instance learning		The pro ○●○	oposed mo	del	Experiments 000000	Conclusion 000	
-									

Proposed model: optimization objectives

• RLS objectives:

$$\psi_1, \dots, \psi_m, \Phi = \underset{\psi_1, \dots, \psi_m, \Phi}{\operatorname{arg min}} \sum_{i=1}^m \left(\left(y_i - \Phi^T(B_i \psi_i) \right)^2 + \epsilon_1 ||\psi_i|| \right) + \epsilon_2 ||\Phi||^2$$
$$O = \underset{O}{\operatorname{arg min}} \sum_{i=1}^N \sum_{j=1}^{n_i} \left(\psi_{ij} - O^T b_{ij} \right)^2 + \epsilon_3 ||O||^2$$

subject to:
$$\psi_{ij} \ge 0 \ \forall i, j \text{ and } \sum_{i=1}^{n_i} \psi_{ij} = 1 \ \forall i.$$
 (5)

Motivation	Multiple-instance learning	The proposed model	Experiments	Conclusion
0000		○○●	000000	000
Learning	with alternating s	teps		

- inspired by alternating projections (Wagstaff'07), proceeds as follows:
 - $\rightarrow\,$ for each bag optimize f1 model for the instance weights s.t constraints (keep f2 fixed)
 - ightarrow optimize f1 model for the regression hyperplane (keep f1 fixed)
 - $\rightarrow~$ optimize f3 model by keeping the other two fixed
- 1: Initialize $(\psi_1, \ldots, \psi_N, \Phi, X)$ 2: while not converged do 3: for B_i in B do 4: $\psi_i = cRLS(\Phi^T Bi, Y_i, \epsilon_1) \# f_1$ model 5: $x_i = B_i \psi_i^T$ 6: end for 7: $\Phi = RLS(X, Y, \epsilon_2) \# f_2$ model 8: end while 9: $\Omega = RLS(\{b_{ij} \forall i, j\}, \{\psi_{ij} \forall i, j\}, \epsilon_3) \# f_3$ model

Motivation 0000	Multiple-instance learning	The proposed model	Experiments	Conclusion 000
Outline of	the talk			

4 Experiments

Motivation 0000	Multiple-instance learning	The proposed model	Experiments ••••••	Conclusion 000
Datasets				

	Bags	Inst.	Dim.	Aspect ratings
BeerAdvocate	1,200	12,189	19,418	feel, look, smell, taste, overall
RateBeer (ES)	1,200	3,269	2,120	appearance, aroma, overall, palate, taste
RateBeer (FR)	1,200	4,472	903	appearance, aroma, overall, palate, taste
Audiobooks	1,200	4,886	3,971	performance, story, overall
Toys & Games	1,200	6,463	31,984	educational, durability, fun, overall
TED comments	1,200	3,814	957	sentiment (polarity)
TED talks	1,200	11,993	5,000	unconvincing, fascinating, persuasive, ingenious, long-
				winded, funny, inspiring, jaw-dropping, courageous,
				beautiful, confusing, obnoxious

Motivation	Multiple-instance	learning		The prop 000	posed model	Experiments 00000	Conclusion 000
F			. •				

Experiments: aspect-rating prediction

	Review labels									
	BeerAd	lvocate	RateBe	er (ES)	RateBe	er (FR)	Audio	books	Toys &	Games
Model \ Error	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
AverageRating	14.20	3.32	16.59	4.31	12.67	2.69	21.07	6.75	20.96	6.75
Aggregated (ℓ_1)	13.62	3.13	15.94	4.02	12.21	2.58	20.10	6.14	20.15	6.33
Aggregated (ℓ_2)	14.58	3.68	14.47	3.41	12.32	2.70	<u>19.08</u>	5.99	<u>18.99</u>	<u>5.93</u>
Instance (ℓ_1)	<u>12.67</u>	2.89	14.91	3.54	11.89	2.48	20.13	6.17	20.33	6.34
Instance (ℓ_2)	13.74	3.28	14.40	<u>3.39</u>	<u>11.82</u>	2.40	19.26	6.04	19.70	6.59
Prime (ℓ_1)	12.90	2.97	15.78	3.97	12.70	2.76	20.65	6.46	21.09	6.79
Prime (ℓ_2)	14.60	3.64	15.05	3.68	12.92	2.98	20.12	6.59	20.11	6.92
Clustering (ℓ_2)	13.95	3.26	15.06	3.64	12.23	2.60	20.50	6.48	20.59	6.52
APWeights (ℓ_2)	12.24	2.66	14.18	3.28	11.37	2.27	18.89	5.71	18.50	5.57
vs. SVR (%)	+16.0	+27.7	+2.0	+3.8	+7.6	+15.6	+1.0	+4.5	+2.6	+6.0
vs. Lasso (%)	+10.1	+15.1	+11.0	+18.4	+6.8	+11.8	+6.0	+6.9	+8.1	+11.9
vs. 2 nd (%)	+3.3	+7.8	+1.5	+3.3	+3.7	+4.9	+1.0	+4.5	+2.6	+6.0

Table : Performance of aspect rating prediction (the lower the better) in terms of MAE and MSE (\times 100) with 5-fold cross-validation. All scores are averaged over all aspects in each dataset. The scores of the best method are in **bold** and the second best ones are <u>underlined</u>.

Figure : MSE scores of SVR, Lasso and APWeights for each aspect over the five review datasets.

Motivation	Multiple-instance learning	The proposed model	Experiments	Conclusion
			000000	
Lynorim	onte: contimont -	and amotion pr	odiction	

Experiments: sentiment and emotion prediction

	Sent.	LABELS	Emo. labels	
	TED	comm.	TED talks	
Model \ Error	MAE	MSE	MAE	MSE
AverageRating	19.47	5.05	17.86	6.06
Aggregated (ℓ_1)	17.08	4.17	15.98	5.03
Aggregated (ℓ_2)	16.88	4.47	15.24	4.97
Instance (ℓ_1)	17.69	4.37	16.48	5.30
Instance (ℓ_2)	16.93	4.24	16.10	5.57
Prime (ℓ_1)	17.39	4.37	15.98	5.78
Prime (ℓ_2)	18.03	4.91	16.74	5.94
Clustering (ℓ_2)	17.64	4.34	17.71	6.02
APWeights (ℓ_2)	15.91	3.95	15.02	4.89
APW vs SVR (%)	+5.7	+11.5	+1.5	+1.6
APW vs Lasso (%)	+6.8	+5.3	+6.0	+2.9
APW vs 2 nd (%)	+5.7	+5.3	+1.5	+1.6

Table : MAE and MSE (\times 100) on sentiment and emotion prediction with 5-fold c.-v. Scores on TED talks are averaged over the 12 emotions.

similar results are obtained with more sophisticated features (BOW tf-idf)

Motivation	Multiple-instance learning	The proposed model	Experiments	Conclusion
0000	000		000000	000
Examples:	sentiment predic	tion		

Sentences per comment	$\hat{\psi}_i$	ŷi	Уi
"Very brilliant and witty, as well as great improvisation."	0.64		
"I enjoyed this one a lot."	0.36	5.0	5.0
"That's great idea, I really like it!"	0.56		
"I can't wait to try it, but first thing, I need a house with	0.44	12	10
big windows, next year, maybe I can do that."		4.2	4.0
"Unfortunately countries are not led by gifted children."	0.48		
"They are either dictated by the most extreme personal-	0.52		
ities who crave nothing but power or managed by politi-			
cians who are voted in by a far from gifted population."		2.4	2.0
"I am very disappointed by this, smug, cliched and miss-	0.43		
ing so much information as to be almost ()"'			
"No mention of ship transport lets say 50% of all material	0.29		
transport, no mention of rail transport, ()"			
"I am sorry to be so negative, this just sounds like a sales	0.28	1.8	1.0
pitch that he has given too many times ()."			

Table : Predicted sentiment for TED comments: y_i is the actual sentiment, \hat{y}_i the predicted one, and $\hat{\psi}_i$ the estimated relevance of each sentence.

Motivation 0000	Multiple-instance learning	The proposed model	Experiments ○○○○○●	Conclusion
Examples [.]	emotion predict	ion		

Class	Top comment per talk (according to weights ψ_i)	$\hat{\psi}_i$ distribution
beautiful	"The beauty of the nature. It would be more interesting just integrates his thought and idea into a mobile device, like a mobile, so we can just turn on the nature gallery in any time. The paintings don't look incidental but genuinely thought out, random perhaps, but with a clear grand design behind the randomness. Drawing is an art where it doesn't ()"	
funny	"Funny story, but not as funny as a good 'knock, knock' joke. My favorite knock-knock joke of all time is Cheech & Chong's 'Dave's Not Here' gag from the early 1970s. I'm still waiting for someone to top it after all these years. [Knock, knock] 'Who is it?' the voice of an obviously stoned male answers from the other side of a door, ()"	
courageous	"I was a soldier in Iraq and part of the unit represented in this documentary. I would question anyone that told you we went over there to kill Iraqi people. I spent the better part of my time in Iraq protecting the Iraqi people from insurgents who came from countries outside of Iraq to kill Iraqi people. We protected families men, women, and ()"	

Table : Top comments for correctly predicted emotions in four TED talks and their distribution of weights.

Motivation 0000	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion •••	
Outline of the talk					

1 Motivation

Multiple-instance learning

3) The proposed mode

4 Experiments

5 Conclusion

Motivation 0000	Multiple-instance learning	The proposed model	Experiments 000000	Conclusion ○●○			
Conclusion and perspectives							

we proposed a promising MIR model for text regression tasks

- models aspect ratings and instance contributions
- discovers structure of labeled and unlabeled texts

2 first results on multi-aspect sentiment analysis based on MIR

- competitive results with respect to SOA
- instance relevance performs better than all other assumptions
- interpretable output

Future work

- \rightarrow test on sentence-level sentiment classification
- \rightarrow experiment with other model settings, regularization and features
- \rightarrow investigate instance weights for other NLP tasks (summaries, segmentation)

Motivation	Multiple-instance learning	The proposed model	Experiments	Conclusion
				000

Thank you! Any questions or comments?