Deep Residual Output Layers for Neural Language Generation

Nikolaos Pappas, James Henderson

June 13, 2019
Neural language generation

Probability distribution at time t given context vector $h_t \in \mathbb{R}^d$, weights $W \in \mathbb{R}^{d \times |V|}$ and bias $b \in \mathbb{R}^{|V|}$:

$$p(y_t|y_{1:t-1}) \propto \exp(W^T h_t + b)$$
Neural language generation

Probability distribution at time t given context vector $h_t \in \mathbb{R}^d$, weights $W \in \mathbb{R}^{d \times |\mathcal{V}|}$ and bias $b \in \mathbb{R}^{|\mathcal{V}|}$:

$$p(y_t|y_{1:t-1}) \propto \exp(W^T h_t + b)$$

- Output layer parameterisation depends on the vocabulary size $|\mathcal{V}|$
 - Sample inefficient
Neural language generation

Probability distribution at time t given context vector $h_t \in \mathbb{R}^d$, weights $W \in \mathbb{R}^{d \times |V|}$ and bias $b \in \mathbb{R}^{|V|}$:

$$p(y_t | y_{1:t-1}) \propto \exp(W^T h_t + b)$$

- Output layer parameterisation depends on the vocabulary size $|V|$
 \rightarrow \textbf{Sample inefficient}
- Output layer power depends on hidden dim or rank d: “softmax bottleneck”
 \rightarrow \textbf{High overhead and prone to overfitting}
Previous work

Probability distribution at time t given context vector $h_t \in \mathbb{R}^d$, weights $W \in \mathbb{R}^{d \times |\mathcal{V}|}$ and bias $b \in \mathbb{R}^{|\mathcal{V}|}$:

$$p(y_t | y_{1}^{t-1}) \propto \exp(W^T h_t + b)$$

- Output layer parameterisation no longer depends on the vocabulary size $|\mathcal{V}|$ \hspace{1cm} (1)
 - More sample efficient
- Output layer power still depends on hidden dim or rank d: "softmax bottleneck" \hspace{1cm} (2)
 - High overhead and prone to overfitting

Output similarity structure learning methods help with (1) but not yet with (2).
Previous work

\[
p(y_t | y_{1:t-1}) \propto g_{out}(E, \mathcal{V})g_{in}(E, y_{1:t-1}) + b
\]

- Shallow label encoder networks such as weight tying [PW17], bilinear mapping [G18], and dual nonlinear mapping [P18]
Our contributions

Output structure learning factorization of probability distribution given word embedding $E \in \mathbb{R}^{|V| \times d}$:

$$p(y_t | y_{1:t-1}) \propto g_{out}(E, V) g_{in}(E, y_{1:t-1}) + b$$

- Generalize previous output similarity structure learning methods
 → More sample efficient
Our contributions

- Generalize previous output similarity structure learning methods → **More sample efficient**
- Propose a deep output label encoder network with dropout between layers → **Avoids overfitting**

Output structure learning factorization of probability distribution given word embedding $E \in \mathbb{R}^{|V| \times d}$:

$$p(y_t| y_1^{t-1}) \propto g_{out}(E, V) g_{in}(E, y_1^{t-1}) + b$$
Our contributions

Output structure learning factorization of probability distribution given word embedding $E \in \mathbb{R}^{|V| \times d}$:

$$p(y_t | y_{1}^{t-1}) \propto g_{out}(E, V)g_{in}(E, y_{1}^{t-1}) + b$$

- Generalize previous output similarity structure learning methods
 - More sample efficient
- Propose a deep output label encoder network with dropout between layers
 - Avoids overfitting
- Increase output layer power with representation depth instead of rank d
 - Low overhead
Label Encoder Network

• Shares parameters across output labels with k nonlinear projections

\[E^{(k)} = f_{\text{out}}^{(k)}(E^{(k-1)}) \]
Label Encoder Network

- Shares parameters across output labels with k nonlinear projections
 \[E^{(k)} = f^{(k)}_{\text{out}}(E^{(k-1)}) \]

- Preserves information across layers with residual connections
 \[E^{(k)} = f^{(k)}_{\text{out}}(E^{(k-1)}) + E^{(k-1)} + E \]
Label Encoder Network

- Shares parameters across output labels with k nonlinear projections

$$E^{(k)} = f_{out}^{(k)}(E^{(k-1)})$$

- Preserves information across layers with residual connections

$$E^{(k)} = f_{out}^{(k)}(E^{(k-1)}) + E^{(k-1)} + E$$

- Avoids overfitting with standard or variational dropout for each layer $i = 1, \ldots, k$

$$f_{out}^{(i)}(E^{(i-1)}) = \delta(f_{out}^{(i)}(E^{(i-1)})) \odot f_{out}^{(i)}(E^{(i-1)})$$
Results

- Improve competitive architectures without increasing their dim or rank

<table>
<thead>
<tr>
<th>Language modeling</th>
<th>ppl</th>
<th>sec/ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWD-LSTM [M18]</td>
<td>65.8</td>
<td>89 (1.0×)</td>
</tr>
<tr>
<td>AWD-LSTM-DRILL</td>
<td>61.9</td>
<td>106 (1.2×)</td>
</tr>
<tr>
<td>AWD-LSTM-MoS [Y18]</td>
<td>61.4</td>
<td>862 (9.7×)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machine translation</th>
<th>bleu</th>
<th>min/ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer [V17]</td>
<td>27.3</td>
<td>111 (1.0×)</td>
</tr>
<tr>
<td>Transformer-DRILL</td>
<td>28.1</td>
<td>189 (1.7×)</td>
</tr>
<tr>
<td>Transformer (big) [V17]</td>
<td>28.4</td>
<td>779 (7.0×)</td>
</tr>
</tbody>
</table>

- Better transfer across low-resource output labels
Talk to us at **Poster #104 in Pacific Ballroom.**

Thank you!

http://github.com/idiap/drill