

www.heig-vd.ch

Multilingual Hierarchical Attention Networks for Document Classification

Nikolaos Pappas¹ Andrei Popescu-Belis^{1,2}

¹Idiap Research Institute, Martigny, Switzerland ²School of Management and Engineering Vaud (HEIG-VD)

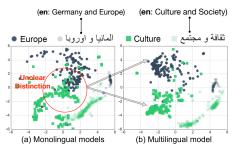
November 30, 2017

Document Representation Learning

"Learning representations which capture the underlying structural and semantic properties of a document."

Why is it important?

- Distills information
- Models linguistic structure
- Helps solving various tasks: classification, summarization



Objectives of this study

- \rightarrow Effectively transfer task knowledge across languages
- \rightarrow Efficiently scale to many languages

Document Classification in Multiple Languages

Given $D^{(l)} = \{(x_i^{(l)}, y_i^{(l)}) \mid i = 1, ..., N_l\}$, a multilingual document collection with l = 1, ..., M languages

- Documents: $x_i^{(l)} = \{w_{11}^{(l)}, w_{12}^{(l)}, \dots, w_{ST}^{(l)}\}$
- Labels: $y_i^{(l)} \in \{0, 1\}^{k_l}$

Goal:

• Estimate conditional probability $p(y^{(l)}|x^{(l)})$ for any language l

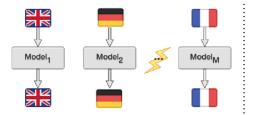
Challenges:

• No document or label alignment is available

Introduction and Background Previous Studies

Document Classification: Monolingual Approach

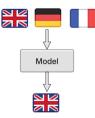
- Learn separate models $f^{(l)}: X^{(l)} \to Y^{(l)}$
 - Hierarchical document modeling \checkmark
 - No cross-language transfer 🗡
 - Does not scale well to many languages X



(Kim, 2014) (Tang et al., 2015) (Lin et al., 2015) (Yang et al., 2016) Introduction and Background Previous Studies

Document Classification: Multilingual Approach

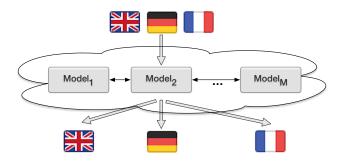
- Learn one model $f: X \to Y$ with an aligned input and label space
 - No hierarchy, simple composition X
 - Cross-language transfer \checkmark only with label alignment \bigstar
 - Scales well to many languages \checkmark only with label alignment \bigstar



(Klementiev et al., 2012) (Herman and Blunsom, 2014) (Gouws et al., 2015) (Ammar et al., 2016)

Document Classification: Our Approach

- Learn a multilingual model $f : X \to Y^{(l)}$ trained with multi-task learning and an aligned input space across languages
 - Hierarchical document modeling \checkmark
 - Cross-language transfer 🗸
 - Scales well to many languages \checkmark



Introduction and Background

Motivation The Problem Previous Studies Our Contribution

Multilingual Hierarchical Attention Networks

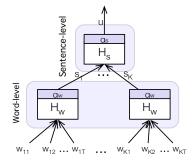
Hierarchical Document Modeling Component Sharing Schemes Training Strategy

Evaluation

Dataset and Settings Quantitative Results Qualitative Analysis

Conclusion

Hierarchical Attention Network



Word-level Abstraction

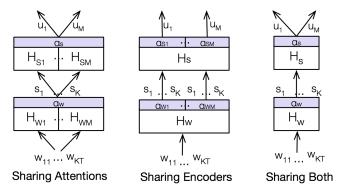
- Encoder layer $h_w^{(it)} = \{g_w(w_{it}) | t = 1, \dots, T\}$
- Attention layer $s_i = \frac{1}{T} \sum_{t=1}^{T} a_w^{(it)} h_w^{(it)} \in \mathbb{R}^{d_w}$

Sentence-level Abstraction

- Encoder layer $h_s^{(i)} = \{g_s(s_i) \mid i = 1, \dots, K\}$
- Attention layer $u = \frac{1}{K} \sum_{i=1}^{K} a_s^{(i)} h_s^{(i)} \in \mathbb{R}^{d_s}$

Sharing Components across Languages

- 1. Sharing attention layers (MHAN-att)
 - Enforces universal attention and language-specific encoders
- 2. Sharing encoder layers (MHAN-enc)
 - Enforces universal encodings and language-specific attention
- 3. Sharing both (MHAN-both)



Multilingual Output Layer and Training

For multi-label classification each vector u is input to a sigmoid layer:

$$\hat{y}^{(l)} = p(y^{(l)}|u^{(l)}) = \frac{1}{1 + e^{-(W_c^{(l)}u + b_c^{(l)})}} \in [0, 1]^k$$

Training objective

• Minimize the sum of cross-entropy errors

$$\mathcal{L}(\theta_1,\ldots,\theta_M) = -rac{1}{NM}\sum_i^N\sum_j^M\mathcal{H}(y_i^{(l)},\hat{y}_i^{(l)})$$

• Mix languages at each iteration *i* by sampling document-label pairs $t'_i = (x^{(l)}_*, y^{(l)}_*)$ for each language *l*

$$(t_1^1,\ldots,t_1^M) \rightarrow (t_2^1,\ldots,t_2^M) \rightarrow \ldots$$

Optimization

Stochastic gradient descent

Impact on Parameters

- The set of parameters for each model from L = 1, ..., M are:
 - $\theta_{mono} = \{H_w^{(L)}, A_w^{(L)}, H_s^{(L)}, A_s^{(L)}, W_c^{(L)}\}$
 - $\theta_{enc} = \{H_w, A_w^{(L)}, H_s, A_s^{(L)}, W_c^{(L)}\}$
 - $\theta_{att} = \{H_w^{(L)}, A_w, H_s^{(L)}, A_s, W_c^{(L)}\}$
 - $\theta_{both} = \{H_w , A_w , H_s , A_s , W_c^{(L)}\}$
- Assuming fully-connected networks, we have the following:

$$|\theta_{mono}| > |\theta_{enc}| > |\theta_{att}| > |\theta_{both}|$$

e.g. Classification with 8 languages (average #params and F1 score)

		77.41 –
MHAN-att (2 languages, aligned)	40K ↓	78.30 ↑
MHAN-att (8 languages, aligned)	32K ↓	77.91 ↑
MHAN-att (8 languages, non-aligned)	32K ↓	71.23 🗸

Introduction and Background

Motivation The Problem Previous Studies Our Contribution

Multilingual Hierarchical Attention Networks

Hierarchical Document Modeling Component Sharing Schemes Training Strategy

Evaluation

Dataset and Settings Quantitative Results Qualitative Analysis

Conclusion

Evaluation Dataset and Settings

Deutsche Welle: A Large Multilingual Dataset

- \rightarrow News articles from dw.com
 - 600k documents, 8 languages
 - Labels assigned by journalists
 - Evaluation splits 80-10-10 (%)

		Labels	
Language	Documents	General	Specific
English	112,816	327	1,058
German	132,709	367	809
Spanish	75,827	159	684
Portuguese	39,474	95	301
Ukrainian	35,423	28	260
Russian	108,076	102	814
Arabic	57,697	91	344
Persian	36,282	71	127

Evaluation Settings

- 1. Full-resource scenario (English + other \rightarrow both)
 - Train on the full set of documents for every language
- 2. Low-resource scenario (English + target \rightarrow target)
 - Train on a subset of documents for the target language

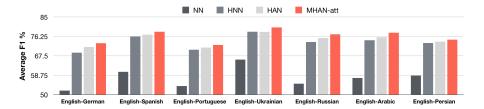
Baselines

- *NN*: Logistic Regression + averaging (Klementiev et al. 2012)
- *HNN*: Hierarchical Network + averaging (Tang et al. 2015)
- HAN: Hierarchical Network + attention (Yang et al. 2016)

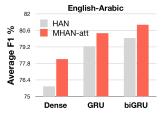
Input: 40-dim (Ammar et al. 2016), <u>Encoders</u>: Dense|GRU|biGRU 100-dim, <u>Attention</u>: Dense 100-dim, <u>Activation</u>: ReLU, <u>Optimizer</u>: ADAM, <u>Batch size</u>: 16, <u>Epoch size</u>: 25,000, Maximum epoch: 200 x |L|, <u>Metric:</u> F1-score

Evaluation Quantitative Results

Full-Resource Scenario

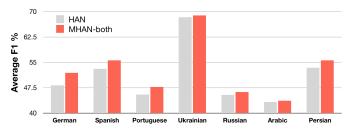


- → Multilingual models outperform monolingual ones
- $\rightarrow\,$ Sharing attention mechanisms is the optimal sharing scheme
- $\rightarrow\,$ Improvement holds for various encoders

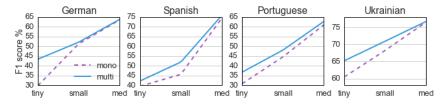


Low-Resource Scenario

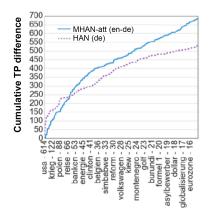
 $\rightarrow\,$ Sharing both attention and encoders is the best configuration



ightarrow Multilingual models are most helpful on a very low-resource setting



Where does the improvement come from?



- → Gains across the full label frequency spectrum
- $\rightarrow\,$ Most improved German labels
 - russland, irak and nato
- $\rightarrow\,$ Most improved English labels
 - germany, football and merkel

Introduction and Background

Motivation The Problem Previous Studies Our Contribution

Multilingual Hierarchical Attention Networks

Hierarchical Document Modeling Component Sharing Schemes Training Strategy

Evaluation

Dataset and Settings Quantitative Results Qualitative Analysis

Conclusion

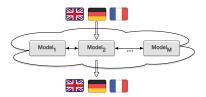
Conclusion

Conclusion

- Multilingual hierarchical models are able to learn robust representations for classification
 - \rightarrow Competitive against monolingual models (full, low)
 - \rightarrow Require fewer parameters than them
- New large dataset for multilingual representation learning

Future work:

- Leverage the aligned space in the output layer
- Investigate more powerful configurations and apply to other tasks



Code and data are available through Idiap's Github repository:

http://github.com/idiap/mhan

Thank you! Any questions?

Acknowledgments

