Self-Attentive Residual Decoder
for Neural Machine Translation
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Self-Attentive Residual Decoder

Limitations of the RNN-based decoder for NMT

- The RNN's internal memory is shared across words and is prone to a

recency bias.

- Does not fully capture the structure of language.

Proposed approach:

- Enhance the RNN memory with direct and selective access to past.

ne residual connections facilitate the flow of information.

ne self-attention allows selective use of previously predicted words.
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Self-attentive residual decoder

Other Self-Attentive Networks

Memory RNN
RNN with memory cells of

Self-Attentive RNN

RNN with a summary vector - The baseline NMT decoder uses a residual connection to the previously

predicted word 1;_;

previous representations from past predictions

[Cheng et al., EMNLP 2016] [Daniluk et al., ICLR 2016]
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- We propose to use residual connections from all previously translated

words 1, ..., Yy;—1 with a summary vector d;.

Self—Attentive Residual
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o} = attention(hy_1, hi, Y1) Experimental Setup

Self-attention Matrices: Datasets: En-ZH UN Corpus 0.5M, Es-En WMT 2.1M, En-De WMT 4.5M

Architecture: Attention-based NMT with GRUs of dimension 1024, 500 for
word embeddings, and vocabulary of 50K.
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Self-attentive residual connections: attention to fewer parameters than other self-attentive methods.

different marker words Code at: https://github.com/idiap/Attentive Residual Connections NMT

- Formation of "phrases” when grouping words by their focus of attention.

Hypothesized Syntactic Structures:

- We proposed self-attentive residual learning framework.

- Improvements over a standard baseline, and two variants of
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- The trees are obtained from the attention weights of the self-attentive
residual connections through a binary tree parser algorithm.
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