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Introduction Background and motivation

Attention mechanism

“A mechanism which learns to focus on relevant parts of the

input or intermediate states for a given task.”

• Machine translation
• Translate sequences of words

• Question answering
• Collect relevant facts and answer
comprehension questions

• Document classification
• Predict one or more categories

Contributions of this study

! Captured human attention when classifying documents

! Used this data to evaluate a document attention model
(Pappas and Popescu-Belis, 2014)
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Introduction Background and motivation

Case study: Predicting aspect ratings of reviews

Given D = {(xi , yi), | i = 1 . . .m}, find �k : X ! Yk , where xi 2 Rd is a
review and yi 2 Rk are the k target aspect ratings

Narration: good [4/5]Story: poor [2/5]

Overall quality: poor [2/5]

• Such “weak” labels are abundant online (social sites)
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Introduction Related work

Typical methods

• BOW, n-grams, topic models (Pang and Lee, 2005), (Titov and
McDonald, 2008), (Zhu et al., 2012)

• Autoencoders, CNN, RNN (Maas et al., 2011), (Mikolov et al.,
2013), (Mesnil et al., 2014), (Tang et al., 2015)

• Training on segmented text or with structured learning to capture
label relations (McAuley et al., 2012)

! Treat the text globally and ignore the “weak” nature of labels
! Make simplistic assumptions when aggregating or pooling features
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Introduction Related work

Attention-based methods

Use attention mechanism in one or more layers of the document modeling
hierarchy (Pappas and Popescu-Belis, 2014), (Yang et al., 2016)

• Model the weak relation of categories to documents
• Provide a smarter way for aggregating or pooling features
• Perform better than typical methods without attention

Study Datasets Metric Averaging Attention
PPB14 5 MSE (µ) 4.34 3.89

Yang16 6 Acc (µ) 65.35 66.41

Limitations

• Evaluation makes use of extrinsic tasks only
• Visual analysis of attention is helpful but not grounded
• Lack of evidence of the quality of the learned structure
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Introduction Overview

Overview of our proposal
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System: A Model of Document Attention Weakly-supervised learning

Multiple-instance regression
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Given D = {(bij , yi) | j = 1 . . . ni}m,
find �k : B ! X ! Yk

• The bag Bi is a review represented
by ni instances bij , its sentences

• The labels yi 2 Rk
are the aspect ratings of the review

• The exemplar (representation)
xi 2 Rd of Bi is initially unknown

Advantages
! Supports several input assumptions (average, max, prime, instance)
! Better suited for weak (bag-level) labels, interpretable and flexible
! Subsumes traditional supervised learning methods
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System: A Model of Document Attention Instance relevance mechanism

Instance relevance assumption

The method proposed in Pappas and Popescu-Belis (2014) models
instance weights and target labels at the same time

xi =
niX

j=1

 ijbij ,  ij � 0 and
niX

j=1

 ij = 1 (1)

• Target labels model: ŷi = f (�, ) = �T (Bi i) s.t. (1)

• Instance weights model:  ̂i = g(O) = OTBi
• Loss based on regularized least squares solved with Alternating
Projections [2014] or Stochastic Gradient Descent [this study]

! JAIR paper underway
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System: A Model of Document Attention Instance relevance mechanism

Learning parameters jointly with SGD

�(Bi ,O) = P( = yi |x) =
e(O

TBi )

Pni
k=1 e

(OTBik )

O,� = arg min
O,�

mX

i=1

(yi � �T (Bi · �(Bi ,O)))2 + ⌦(�,O)

• Preserves constraints of instance relevance assumption
• Achieves similar performance to alternating projections
• Makes the learning procedure more scalable

Shared material
! Code: wmil, wmil-sgd

https://github.com/nik0spapp/
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System: A Model of Document Attention Instance relevance mechanism

Estimated relevance of sentences

MIR weights for a positive audiobook review (4 out of 5).

• Captures how relevant is a sentence to the aspect rating
• This is di↵erent from topicality, i.e. being “about” an aspect

• zero relevance for a factual sentence about an aspect
• high relevance sentences are more likely to discuss topic
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Evaluation Aspect-based rating prediction

Results: Document-level aspect rating prediction

• MIR document attention model achieves lower error than
• methods trained with segmented text (SVM, PALE LAGER by
McAuley et al. 2012)

• structured learning (Structured SVM, PALE LAGER)

! How can we evaluate the sentence relevance intrinsically?
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Evaluation Comparing mechanism to humans

Crowdsourcing task

Goal: capture human attention to sentences when attributing categories
(aspect ratings) to documents (audiobook reviews)

• How much does each sentence explain the given aspect rating?

Data: reviews from Audible

• 4,986 micro-tasks = 1,662 sentences (100 reviews) ⇥ 3 aspects
• obtained 20k annotations (�4 annotators per micro-task)
• 0.60 agreement score by Crowdflower

Shared material
! HATDOC dataset

https://www.idiap.ch/paper/hatdoc
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Evaluation Comparing mechanism to humans

Crowdsourcing task: Screenshot
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Evaluation Comparing mechanism to humans

Example: Positive review

Visualization of attention labels (normalized per aspect).

! More examples online:

http://www.idiap.ch/paper/hatdoc/explore.html
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Evaluation Comparing mechanism to humans

Results: Human attention prediction (exact match)

• MIR outperforms Random for all three aspects (confidence � 0.8)
• High MIR accuracy on the Performance aspect (least ambiguous)
• MIR compares favorably to fully-supervised LogReg (oracle)
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Evaluation Comparing mechanism to humans

Reliability analysis: STD change with label replacements (x100)

• MIR consistently outperforms Random for all aspects and levels
• MIR is comparable to qualified humans for Story and better than
qualified humans for Overall
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Conclusion

Conclusion

• New intrinsic benchmark for attention mechanisms
• Document attention models capture meaningful structure

• Positive correlation of MIR accuracy with human confidence
• Comparable results to qualified humans for two of the aspects

• Intuitive way to summarize the sentiment towards each aspect

Extensions:

• Refine evaluation and compare to other attention-based models
• Apply to other labels (e.g. topics) and linguistic levels (e.g. words)
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