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Outline of the talk

1. Introduction and Motivation

2. Word Representation Learning

e Semantic similarity
e Traditional and recent approaches
e Intrinsic and extrinsic evaluation

3. Word Sequence Modeling
e Essentials: Encoders, Attention, DL tricks
e Text Classification
e Machine Translation

4. Conclusion and Discussion
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Natural Language Processing

* NLP is a field at the intersection of Al and linguistics
e Linguistics (structure of language, brain mappings,

anguage learning)
« Computational Linguistics (comp. models
of language, tools for studying language)

« Goals
v Process large amounts of natural text

v Give computers the ability to “understand”
language to perform useful tasks

=|ntrinsic tasks: parsing, language modeling, etc

=Extrinsic tasks: speech recognition, translation, etc
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Levels of processing

= Lexical level
e Speech: phonetic analysis
e Vision: character recognition

= Morphological & Syntactic levels OL%‘
oMoy,

* Word structure (forms, inflections) - m%
‘§fg«3,; ,\
» Sentence structure (grammar, syntax) NG

= Semantic & Discourse levels
 Word and sentence meanings
* Broad context, co-reference

= The ultimate goal of a system however is to be able
translate, assist, retrieve, classify, communicate

Nikolaos Pappas

4 /111



Intrinsic tasks: Text segmentation
& Morphology

* Tokenization (split text into ¢« Stemming (reduction of

meaningful segments)

it nat ronl that ping pong is not included inria 2016

% Tokenlzatlon

not ncluded | in rio 20106

* Punctuation prediction

>> Qriginal speech utterance:

vou arc guile welcome and by the way we may get other
reservations so could you please call us as soon as you fix the
date

>> Punctuated (and cased) version:

You are quite welcome . And by the way . we may get
other reservations , so could you please call us a5 soon as you
fix the date ?

word forms to stems)

amus close
amuse close
amused closed
amusement closely
amusements closing
amusing

 Lemmatization (reduction of
word forms to base form &
intended POS and meaning )

I:happy happy, happier, happiest
l:go go, goes, going, gon(na), went, gone
I:man man, men

Morphemes: smallest linguistic pieces with a grammatical function (inflectional: fish-> fishes, derivational: fish ->
fishery, compounding: sky + scraper -> skyscraper)
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Intrinsic tasks: Syntax & Grammar

» Part-of-speech tagging * Constituency parsing (nested
(POS tags sequence) phrasal structures)
DT NN VBD DT NN N
N — T
Det N P VP
| _..-""""I\\.
the Drother of NP N’ VP
AN I N

st N N V N
I I I
the grl who lett us

the dog ate the cat
° Dependency parsing (role ¢ Language m0de|ing (WOI‘d

specific structures) sequence)
A hearing 1s  scheduled on  the issue today O *2 X

DT: determiner, NN: noun, singular, VBD: verb past tense, NP: noun phrase, VP: Verb phrase, ATT: attributive,
SBJ: nominal subject, TMP: temporal modifier, PC: prepositional complement
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Intrinsic tasks: Semantics & Discourse

. Lexicalsemantic‘s  Named entity recognition

WOMAN 'le?i s T
e, e RS
A AUNT rac -'E%' ' hits back at F¥SE CEO it over his past jabs at
MAN / t+. _fa{ 5
UNCLE e, ti* I Potential tags:
QUEEN e 3 :%. v ORGANIZATION
o N LOCATIO
KING e AR PERSON
R

e Textual entailment * Coreference Resolution (find
(directional relation expressions referring to the

between text fragments) same entity in a text)

A senior is waiting at the
P window of a restaurant Relationship —
that serves sandwiches. — T~—
N rte - “«
A person wails 10 be Entailment | voted for Nader because he was most
served his food. ’ e

A man 1s looking to order ~ ————
& Neutral

a orilled cheese sandwicl ’ ’ N\ ,,\ ’
ek Ahmachak kel - aligned with my values,” she said.

A man 1s waiting in line n -
. Contradiction
for the bus.

L
H"

“P, Premise.
“H, Hypothesis.
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Extrinsic Tasks

* Machine translation * Question answering

English Greek French Detlect language ~

the cat sat on the mat

Creok Forsian  Fronch -~ m

Le chat s'est assis sur le tapis

w0 <

program, staffed and crewed by humancid zliens known as
. "Kerbals". The game features a realistic orbital physics engine,
. allowing for such as
Hohmann transfer arhits and bi-elliptic transfer orbits,

Question
.-'
X What does the physics engire allow for?
Passage Context
Kerbal Space Pragram (KSP] is a space flight simulation video
game developed ard published by Squad for Microsoft
Windows, S X, Linux, PlayStation 4, Xbox One, witha Wi U
version that was supposed to be released at a later date. The
# Seggest an edit

developers have slaled thal the gaming landscape has
changed since that announcement and more details will be

released scon. In the game, players direcl a nascenl space
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Extrinsic Tasks

* Sentiment analysis

— Moviestar feeling and decadence from

igned by Johnny Weissmuller.

Cons: this is what made my grade a 3 instead of 4. We had [iSSIENS
. If you're not depend this is not interesting. We
lalked several times with the front desk.

When we're thare they had pa
noon and 5 PM. The

avent in the | araa belween

e Summarization

m—speclir 'tnléviélnrné can be usex! o aarfelly record mnvemau'nne :

dewces n cmenl J3E .
cig documen:s revealed that microwave ovens cen spy on you - mayba if you personely den't suffer the
cansequences of tha sub-par security of the iot .

mm ros .nm Kadranr o(mtdux o ﬁmnﬁmm-mwmnvna WD GIREEE Ak 10033 G 21 Woes o
war o borou . Ser: 2o L cekide oasadl Lat you e breroew o OF wlacer . owih 38 5 senuals pouleas orals napensdcg 00 4 new wean wpne g avay i of busdme Ul peer .
B~ you COmGrEN SRR BT L COrmecumaas o fu UG EEE SR 21 e BT | vour corracad saonts My Wl 39 STAREE ToSen s Wi Erirak |, Lad Sxieser , I-bemt
v dou powde Dgr e ade ar i Ul oy apted wooen b popohe sbe i . Tow sl brines wos B RS e R e el lemﬂw
Senias | Twely TS aowd convennd 00 getem s i Doy A o ool | cateciadns ty et B e Seboeis B coled S v et ol agibon o e T oo e by bt T

e chedtirers e Jeer oodommers dom ) o oo, B oo by o O 88 Lifonn b adeon s bl dedims oo o lae . Wit Deoeuer L goas oot mdu- w ga) wed Ll i )
AV | w0 a o] At onr et i BT secarty Increaliges I I rcral yeneeans Trer Redee repodt &0 secarty and Al prodsasitoels | Toneatns Prasws duinses e
Stk 10 1he 10 s b fed argeriatl N1 ananty direieg et | watal BT e s 8 30ght | Mg e sy SO Tl cn Ay &0 sl InT Yy akers . T lawed of Camriadata
sredpein haw's o B o B G el weronias e bon ST rava rly DT aetatl earty | Finetiog and swaniog e neanrt cateect og T reviera n hvieead gyfere o e riamal al
N A0ty B A DT rdre SRS 1Uan land B0 NEVORE eS0T PaLEa 17000 3 L WAl nAg O 0TITANNN 0N (0S| FEAirIl, ANE Siver caZadd el (B o wheh
FENFCTIE €503 0V INGITISIE LOMILAT/ . 42¥ (RPN KO NI TTAN0N IAC00 T COCANE, fOORITTE 200N 03 DYATUG Ard DTITARY0 D3 Wil 33 070F 23005 Auoh £ M owa i 1nd
ME220 (IOVIALON [0 OMICier TYRIMS  HATYEZ vI83203  EXFAIN ReMOnE | U0 LASTed . 0% 02 . 100 (e erigdhza | YIra'g NG a3y or sdefl W Lurandetie Y I
“adrr  “ougim rarom e rmEra lerer al Ak rover | gvh o ronvird ran | reain rem ATk £ ateosad T T e Mt Mrhreina oa mashatme mch e e den

« Dialogue agents / Chatbots
* Topic recognition

e Search and retrieval

e and more
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What is special about natural
language?

* Formal languages are static, explicit and non-ambiguous
* Defined as mathematical abstractions (alphabet, rules)
* One can explicitly enumerate all well-formed words

* Natural languages are dynamic, implicit and ambiguous
» Existin the real world and is spoken by its users
 Grammar is discovered through empirical investigation

“Cathrine and John gave flowers to Mary.
She said “thanks” and put them in a vase.”

“I need to talk to you asap.” (abbreviations)

“Did you download the app?” (neologisms)
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What is natural language?

« A naturally evolved system used by humans to express thoughts for
(i) communicating with one another, (ii) learning from previous
(iii) experiences and achieving their goals

« Essentially, it is a discrete / symbolic / categorical signaling system
v Symbols are invariant across signals (audio, visual)

- s

v Concise and grounded on shared knowledge (entails ambiguities)
“Did you watch the finals? Our goalkeeper was useless!”

v Unlimited expressive power (implies flexible interpretation rules
i.e. meaning cannot be exclusively expressed in the surface form)

“All politicians lie.”| Vx, politician(x) = lier (x)
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What are the main challenges in
language understanding’?

(AT O england
-

Symbolic encodings require large vocabularies o
e Sparsity issues for machine learning
e Scaling issues in real-world settings -

Brain encodings appear to be a continuous pattern  g—

2 o< Mty SNQATPONES IN COMEANIN BN

of activations (distributed across neurons)
= Continuous encodings provides a cognitively
plausible way to encode thoughts

Buchweitz et al. 2009

* Challenges
 How to learn continuous encodings that generalize well?
* Can we encode very complex thoughts in a single continuous encoding?
* Can we create and reason over thoughts to solve any NLP task?
 How to transfer knowledge from one domain, task, language to another?
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What is Deep Learning?

* Machine Learning boils down to minimizing an objective functlon
to increase task performance »

* Mostly relies on human-crafted features (3

* Tasks involve regression, classification,

structured prediction, representation learning

= Representation Learning: Learn good features or representations

= Deep Learning: Machine learning algorithms based
on multiple levels of representation or abstraction
v Biologically inspired from how the human brain works
v Neurons activate to certain inputs and excite other neurons
v Can handle a variety of input, such as vision, speech, and language
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Deep Learning: Why this
decade?

 What enabled deep learning techniques to start
outperforming other machine learning
techniques since Hinton et al. 20067

* Larger amounts of data
e Faster computers and multicore cpu and gpu

 New models, algorithms and improvements
over “older” methods (speech, vision and
language)
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Deep Learning for speech:
Phoneme detection

e The first breakthrough results
of “deep learning” on large
datasets by Dahl et al. 2010

Phonemes/Words

e -30% reduction of error

 Most recently on speech
synthesis Oord et al. 2016

4.55%

Hdden -

Layes 4
421 / l /

Hidden \

Layae —_—
.40
Hdden

w0 000000000000 0COCOES
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Deep Learning for vision:
Object detection

e Popular topic for DL

e Breakthrough on ImageNet
by Krizhevsky et al. 2012

e -21% and -51% error
reduction attop 1 and 5

| . %\
e | g b < 5
gri Vac
rtible agaric dalmatian I monkey
grilie mushroom grape splder monkey
pickup jelly fungus elderberry tt|

beach wagon gill fungus |ffordshire bullterrier
fire engine

dead-man’s-fingers ' currant

Zeiler and Fergus (2013)
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Deep Learning for language:
Ongoing

 Significant improvements in recent years across different
levels (phonology, morphology, syntax, semantics) and

applications in NLP
i RN

* Machine translation (most notable) \ p=

e Question answering
e Sentiment classification

e Summarization

Still a lot of work to be done...
(beyond supervised and “basic” recognition)
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Deep Learning for language:
Machine Translation

« Reached the state-of-the-art in one year: Bahdanau et al.
2014, Jean et al. 2014, Gulcehre et al. 2015

(a) English—French (WMT-14)

NMT(A) | Google | P-SMT
NMT 32.68 30.6"
+Cand 33.28 — .
LUNK || 3390 | 3270 | 3703
+Ens 36.71 36.9°

(b) English—+German (WMT-15)

Model Note

24.8 Neural MT

24.0 U.Edinburgh, Syntactic SMT
23.6 LIMSI/KIT

22.8 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT

(c) English—Czech (WMT-15)

Model Note
18.3 Neural MT
18.2 JHU, SMT+LM+OSM +Sparse
17.6 CU, Phrase SMT
17.4 U.Edinburgh, Phrase SMT
16.1 U.Edinburgh, Syntactic SMT

Nikolaos Pappas

18 /111



Neural network components for
language understanding’

Distributed Representations (word/subword units)

 Ability to represent ‘meaning’ efficiently

Abstraction & Composition (word sequences)

* Ability to compose complex meanings’ from simpler ones
Attention Mechanism

 Ability to focus on/collect what is ‘relevant’ (input, memory)
Memory Mechanism

 Ability to store/retrieve important previous information/knowledge
Reasoning Mechanism

 Ability to reason with what is relevant’

Learning Mechanism

 Ability to learn from past experience
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Outline of the talk

1. Introduction and Motivation
e Basics: Perceptron, NNs, SGD

2. Word Representation Learning

e Semantic similarity
e Traditional and recent approaches
e Intrinsic and extrinsic evaluation

3. Word Sequence Modeling
e Essentials: Encoders, Attention, DL tricks
e Text Classification
e Machine Translation

4. Conclusion and Discussion
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Basics: Perceptron

b: We can have an “always on”

h (x) - f(wa + b) «—— feature, which gives a class prior,
w,b \" : .
or separate it out, as a bias term
|

— 1 —
f@)=r—

+e "

054

Xl "/‘"
| __,,_/’/' | 1
X2 -6 -4 =2 On: 2 4 6
>
a— hw,b(x)
X3~
| w, b are the parameters of this neuron

i.e., this logistic regression model
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Basics: What can a perceptron
do?

* Solve linearly separable problems
OR (21, 22) AND (1. x5) AND (z,,72)

* ... but not non-linearly separable ones.

\()H |:.I'] L9 l
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Basics: From logistic regression
to neural networks

eﬂ.Tf(c,d)
Vector form:  P(cld,A)=—=<—+—
E A f(c'd)
e
.
Make two class: : o :
A f(e.d) A fle,d) A f(c),d)
e 14 4
P(Cl Id’}L) - AT F (e .d) ATF(cy . d) - ATF(e.d) AT F(cyd) . ~ATf (e d)
el +e 2 e | +e..49 e J LYl
: : f f(e,,d)- f(c,.d)
= — - — = - orx= f(c,d)- f(c,,

= f(A'x)

A | for f(z) = 1/(1 + exp(=2)), the logistic function — a sigmoid non-linearity.

5 4 z ) i 4 b

Nikolaos Pappas
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Basics: Neural network

* Apply several regressions to
obtain a vector of outputs

* The values of the outputs
are initially unknown

* No need to specify
ahead of time what
values the logistic
regressions are trying
to predict
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Basics: Neural network

 The intermediate variables
are learned directly based
on the training objective

— * This makes them do a good
s} job at predicting the target
for the next layer

Layer L,

e Result: able to model non-
linearities in the data!
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Basics: Neural network with
multiple layers

p—3
Nyp(X)
p—3
+1 Layer L,
Layer L
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Basics: Learning model

parameters with gradient descend

e Given training data D = {z", 4"}~ find ¥ and &
that minimizes loss with respect to these parameters

/(@) = )\Zq\u li—l/ ).)

 Compute gradient with respect to parameters and make
small step towards the direction of the negative gradient
* Apply chain-rule for nested functions e.g. y=f(g(x))

aF
AW

PN
30,0,) . |
a7 | e =S
b=b—a—— TN,
ab | ‘ ’

«v - learning rate or step size.

W=W —a
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Basics: Stochastic gradient
descent (SGD)

* Approximate the gradient using a mini-batch of
examples instead of entire training set

 Online SGD when mini batch size is one

 Most commonly used when compared to GD

wr = wi — o . (gla(z') =y D) . ¢ (a(z')) . M for k=1,..,d
I\ )~ Y ") -G\ ), k .

b=b—a. (gla(z?) —yD) . ¢ (a(z™))
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Choosing a Stochastic

Optimization Algorithm

Basics

L L L) rrren

o

- Momentum

= NAG
- Adagrad

Adadelta

Rmsprop

Rt v SGD

N T

—_—
e —

——

o,

e

Several out-of-the-box
strategies for decaying

learning rate of an

LB
- Q
O o
5 v
- -
= L
(ra L
3 O
V —
5 Q
= N
T,
o) *
o

to

according

validation set

performance

29 /111
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Training neural networks with
arbitrary layers: Backpropagation

« We still minimize the objective function but this time we
“backpropagate” the errors to all the hidden layers

e Chainrule: If y=flu) and u = g(x), i.e. y=f(g(x)), then:

dy  dydu __ df(u) dg(x)

dr  du dzx du dx

Typically, backprop

 Useful basic derivatives: computation is
Implemented in

oxT a oal x popular libraries:
—_ — a
Bx Ix Theano, Torch,
Tensorflow
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Basics: The end

» Essentially, now we have all the basic “ingredients” we need to
build deep neural networks

 However, we will also need

= Ability to learn from different inputs (spatial, sequential,
continuous vs discrete)

= Overcome optimization difficulties (exploding/vanishing
gradient, information flow, convergence)

= Avoid overfitting / Regularization (dropout, L2 norm)

= and other...
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Outline of the talk

two -, ~ england
X

1. Introduction and Motivation 8
2. Word Representation Learning 1 " rance
. . . . car ~ " three
® Semantlc Slmllarlty tWﬂ\\ l /_,englmld
» Traditional and recent approaches Tl 2
e |ntrinsic and extrinsic evaluation T

/ N,
gat ‘ ‘three

3. Word Sequence Modeling
e Essentials: Encoders, Attention, DL tricks
e Text Classification
e Machine Translation

* Figure from Lebret’s thesis, EPFL

4. Conclusion and Discussion
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Semantic similarity: How similar
are two linguistic items?

e Word level

screwdriver —?—> wrench very similar

screwdriver —?—> hammer

screwdriver —?—> technician

screwdriver —?—> fruit unrelated g
* Sentence level AR

The boss fired the worker
The supervisor let the employee go very similar
The boss reprimanded the worker

The boss promoted the worker

The boss went for jogging today  unrelated
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Semantic similarity: How similar
are two linguistic items?

e Defined in many levels

e Words, word senses or concepts, phrases,
paragraphs, documents

e Similarity is a specific type of relatedness
* Related: topically or via relation
heart vs surgeon
wheel vs bike
e Similar: synonyms and hyponyms
doctor vs surgeon
bike vs bicycle
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Semantic similarity: Numerous
attempts to answer that

Allison and Dix (1986) Sussna (1993, 1997)
GUSer|d (1997) Wu and Palmer (1994)
Wise (1996) Resnik (1995)
Keselj etal. (2003) Jiang and Conrath (1997)
50+ Approaches from Lin (1998)
SemEval Hirst and St-Onge (1998)
2012,2013,2014 Leacock and Chodorow (1998)
Salton and McGill (1983) Patwardan (2003)
Landaueretal. (1998) Banerjee and Pederson (2003)
Turney (2007)

Gabrilovich and Markovitch (2007)
Ramage et al. (2009)

We refer to these as Yeh et al. (2009)
Linguistic Levels Radinsky et al. (2011)

\

Sentence VWord Sense

*Image from D. Jurgens’ NAACL 2016 tutorial.
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Semantic similarity: Numerous
attempts to answer that

Allison and Dix (1986)
Gusfield (1997)
Wise (1996)
Keselj et al. (2003)
50+ Approaches from
SemEval
2012, 2013, 2014

Sussna (1993, 1997)
Wu and Palmer (1994)
Resnik (1995)

Jiang and Conrath (1997)
Lin (1998)

Hirst and St-Onge (1998)
sacock and Chodorow (1998)
Patwardan (2003)
anerjee and Pederson (2003)

Gak 7)
Ramage et al. (2009)
We refer to these as \[(eh et al. (2009)
Linguistic Levels Radinsky et al. (2011)
Sentence Word Sense
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Semantic similarity: Why do we
have so many methods?

* New resources or methods
» Datasets reveal weakness in previous methods
» State-of-the-art is moving target

» Task-specific similarity functions

* Performance in new tasks not satisfactory

= Semantic similarity is not the end-task

* Pick the one which yields best results
* Need for methods to quickly adapt similarity
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Two main sources for
measuring similarity
] WordNet

A lexical database for Eng

WIKIPEDIA
BabelNet The Free Encyclopedia
Massive text corpora Semantic resources and

knowledge bases
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How to Represent Word

‘Meaning’?
 Discrete: each dimension dog =10,0,0,1,0,0]
e 1l cat =[0,1,0,0,0,0]
denotes a specific linguistic item sim(dog, cat) = 0.0
* |nterpretable dimensions wo .  england
* High dimensionality 8 /
» Continuous: dimensions are not / ‘/‘f“’"ce
tied to explicit concepts - o ¥ N england
* Enable comparison between ws. ¥
represented linguistic items AN
* Low dimensionality fance
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How to compare two linguistic
items in the vector space

e Cosine of the angle 6 between A and B:

ﬁ: A, B;
COS(H) f\.'IB =1

|A[l]B [n

f
/ [
[ 2 | 2
V 21 4; V 21 B
1= =

) §

1)
\ /‘
\ ”
=~ ™ -~
A€ Ny
\ A
\ -~
\

* Explicit models have a serious sparsity problem due to their
discrete or “k-hot” vector representations

france =
england =
france is near spain =

« cos(france, england) = 0.0

0,0,0,1,0,0
:OI 1) OI OI OI O:

1,001,1,1]

« cos(france, france is near spain) = 0.57

Nikolaos Pappas
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Learning Word Representations
From Text

* Limitations of knowledge-based methods
* Out-of-context despite validity of resources
* Most lack of evaluation on practical tasks

 What if we do not know anything about words?

Follow the distributional hypothesis (unsupervised): “You
shall know a word by the company it keeps”, Firth 1957

financial institution

/

bank
bank

bank\\\\*

geographical term
Nikolaos Pappas 41 /111




Simple approach: Compute a word-
IN-context co-occurence matrix

 Matrix of counts between words and contexts

D

\e«‘l;i«*"b Qoﬁ‘?g%‘e*v. . 00‘*’%0‘*'\0
Term-i Term-i ) Term-i
words context document

« All words have equal importance (imbalance)
* Vectors are very high dimensional (storage issue)

* Infrequent words have overly sparse vectors (make
subsequent models less robust)
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The most standard approach:
Dimensionality Reduction

e Perform singular value decomposition (SVD) of the word
co-occurence matrix that we saw previously

« Typically, U*Z is used as the vector space

*Image from D. Jurgens’ NAACL 2016 tutorial.
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The most standard approach:
Dimensionality Reduction

e Syntactically and semantically related words cluster together

R SING
s CHOSENOSE
e "
?_\ ING n 'AKENUTAKI NG
0TO0K
m SHOWN
0 SHCWED
OSHOWING
«SHOW
= GRQ¥Row
OGREW
AGHOWING

*Plots from Rohde et al. 2005

m STOLEN

s STEAL
CSTOLE
ASTCALING

= THR AR

= EAJENT
O

¢ DRIVER
 JANITOR
c DRIVE e SWIMMER
e STUDENT
< CLEAN e TEACHER
« DOCTOR
¢ BRIDE
cSWIM .
e PRIBST
oLearn  ©TEACH
o MARRY
OTREAT CPRAY
44 /111

Nikolaos Pappas



Dimensionality

reduction with

Hellinger PCA

* Perform PCA with Hellinger c

istance on the word co-

occurence matrix: Lebret and Collobert 2014

 Well suited for discrete

orobability distributions (P, Q)

1

H(P, Q) = 73\

k

S (VB - VG2,

=1

* Neural approaches are time-consuming (tuning, data)
* |nstead compute word vectors efficiently with PCA

* Fine-tuning them on tas

ks; better than neural

. : hard to add new words, not scalable O(mn?)

https://github.com/rlebret/hpca
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Dimensionality reduction with
weighted least squares

* Glove vectors by Pennington et al 2014. Factorizes the log of
the co-occurence matrix:

- wi /]
1 - ) 06 | E
7(0) =5 > f(Py)(ulv; ~log Py) "™ /]

1.1=1

» Fast training, scalable to huge corpora but still hard to
incorporate new words

* Much better results than neural embedding, however under
equivalent tuning it is not the case: Levy and Goldberg 2015

http://nlp.stanford.edu/projects/glove/
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Dimensionality reduction with
neural networks

 The main idea is to directly learn low-dimensional word
representations from data

* Learning representations: Rumelhart et al 1986
* Neural probabilistic language model: Bengio et al 2003
* NLP (almost) from scratch: Collobert and Weston 2008

* Recent methods are faster and more simple
« Continuous Bag-Of-Words (CBOW)
» Skip-gram with Negative Sampling (SGNS)
« word2vec toolkit: Mikolov et al. 2013
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word2vec: Skip-gram with
negative sampling (SGNS)

* Given the middle word predict surrounding ones in a fixed
window of words (maximize log likelihood)

o
. 1 , \
TO) =72 2 logp(wejw) c,
=1 —m<j<m,j7#0
Ca
Hidden layer
Wo weight matrix
¢
For negative sampling, replace w,
with a random word’s vector and
penalize. e
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word2vec: Skip-gram with
negative sampling (SGNS)
 How is the P(w¢|h) probability computed?

P(w;|h) = softmax(score(w;, h))
exp{score(w;, h)}

Z\’Vord w’ in Vocab exp{score(w’, h)} .

 Denominator is very costly for big vocabulary!

* |nstead it uses a more scalable objective, logQg is a
oinary logistic regression of word w and history h:

JNEG = log Qg (D = ].|’wt, h) +k K [log Qg (D — 0"’&?, h)]

w~~ P, noise
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word2vec: Continuous Bag-Of-Words
with negative sampling (CBOW)

 More efficient but the ordering information of the words
does not influence the projection

 Factorizes a PMI word-context
matrix: Levy and Goldberg 2014

Hidden layer

« Builds upon existing weight matrix [ Wo
methods (new decomp.) ]
1

 I[mprovements on a variety
of intrinsic tasks such as
relatedness, categorization , -
9 | T | RG  WordSim MEN TOEFL
and analogy: Baronietal "o, fayn™o0™ g 72 76
2014, Schnabel et al 2015, qovec 83 78 80 86
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Distributed representations:
Encoded properties

 Encodes general-purpose relations between words: present—
past tense, singular—plural, male—female, capital—country

* Analogy between words can be efficiently computed using basic
arithmetic operations between vectors (+, -)

@
.
-~
~

king

I

Male-Female

King - man + woman = queen

Ita adri

Verb tense Country-Capital
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Summary: Learning word
representations

* Neural versus count-based methods
* neural ones implicitly do SVD over a PMI matrix
* similar to count-based when using the same tricks
* Neural methods appear to have the edge (word2vec)
o efficient and scalable objective + toolkit
* intuitive formulation (=predict words in context)
= Several extensions
 Dependency-based embeddings: Levy and Goldberg 2014
» Retrofitted-to-lexicons embeddings: Faruqui et al. 2014
* Sense-aware embeddings: Li and Jurafsky 2015

 Visually-grounded embeddings: Lazaridou et al. 2015
* Multilingual embeddings: Gouws et al 2015
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Summary: Learning word
representations

How can we benefit from them?
 study linguistic properties of words
* inject general knowledge on downstream tasks
* transfer knowledge across languages or modalities
* representations of word sequences

010..010...010....010...010...010

A cat mat on sat the

O Ol 1O
O Ol 1O
O O 1O

A cat sat on the mat
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Outline of the talk
©

1. Introduction and Motivation

—

E A =
2. Word Representation Learning
e Semantic similarity é@

e Traditional and recent approaches
A

?
* Intrinsic and extrinsic evaluation A A [—
3. Word Sequence Modeling é} é éD

. . . * Figure from Colah’s blog, 2015.
e Essentials: RNNs, Attention, DL tricks
e Text Classification
e Machine Translation

®
[
A

4. Conclusion and Discussion
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Language Modeling

« Computes the joint probability of a sequence of words by employing
the chain rule (“How likely is a text”):

p(Wl,Wz,...,Wt) = p(\/\ll)p(\/\lz|W1)p(W3|W2,W1)... p(\/\ltl\/\lt-l,\/\lt-z,...)

* Given the observed text how likely is the new utterance?

P (We | We-1y ey W1) Evaluation
 Hence, we can compare orderings (translation) H(w]) - _%mgzp(wp’)

p(he likes apples) > p(apples likes he) perplexity(w)V) = 2H(*")

or word choice (speech recognition)
p(he likes apples) > p(he licks apples)

= Exact decomposition allows to learn complex distributions

= Many NLP tasks can be structured as (conditional) language model
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Language Modeling:
Markov Models

 N-gram models: history of observed words is approximated with
just the previous n words (Markov model):

* hard to capture long-term dependencies (bounded memory)

e does not leverage word semantics and relationships
count(wy, wa, w3)

wi3|wy, wa) =
P(wsw1, w2) count(wi, wp)

* Neural n-gram models: embed the same fixed n-gram history in a
continuous space (still Markov model)

e captures better correlations + smaller memory footprint

There!

h, = g(V[Wn—1; Wn—2] T C) ‘ ‘- : ‘
pn = softmax(Wh, + b) : f f :

e trained with MLE e .- - s
_l ‘. “1” 4“ 4“ 4l r ) 4 l
N

n

F =

cost,(Wn, Pn)
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Language Modeling:

Recurrent Neural Networks (RNN)

* With RNN LMs we drop the fixed n-gram history and
compress the entire history in a fixed length vector

* long range correlations are captured — in theory
« can represent unbounded dependencies

* but, they are hard to learn (vanishing gradient)
hn = g(V|[xni hp-1] + ¢)

There ) he ) buit

2 2 2 z
& A A A
Wt | p\ R R P2 i | ps\
s 4 “ 4
h| ! > ’l) J ' > ’l 3 1 > ,.' 1
0 I A A

('
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Language Modeling: Deep RNNs

Increasing the size of the hidden layer results in a

guadratic increase in the model size and computation

Stacking multiple RNNs increases the memory capacity

and representational ability with linear scaling

Cpr )
$

a1 )—

Chso) 7 ! ‘ /
—=={ 12| "
h20) ( hia —
Chig ) ( wo )

We can also increase depth in the time dimension

(P2 _ D3
} t
]13_ 2 *—" (: h 3.3
f t
/1.-3_ 2 >—»( h'.??.’{

1 1
N2 —( M3
T g
T ) ”
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Scaling: Large Vocabularies

 Much of the computational cost comes from the classification
layer because its parameters depend on the size of the vocabulary:

P, = softmax (Wh, + b)

 Several solutions exist

* Short-lists: use most frequent words + n-gram LM for the rest

* Local short-lists: subsets of vocabulary specific to data segments

* Gradient approximations: use Noise Contrastive Estimation
(NCE) i.e. learning a binary classifier to distinguish between data
samples from k samples from a noise distribution:

Pr

Data =1|p,) = —
p( |p ) pn -+ kpnoise(wn)
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Scaling: Large Vocabularies

 Changing the input granularity and model text at the
morpheme or character level

 Much smaller softmax but longer dependencies
* |t captures morphological properties of words

* Byte-Pair Encoding method is most common for
neural MT (Sennrich et al 2015)
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Long Short Term Memory (LSTM)

* Long-short term memory nets are able to learn long-
term dependencies: Hochreiter and Schmidhuber 1997

Simple RNN:

_/ \l /
* Figure from Colah’s blog, 2015.
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Long Short Term Memory (LSTM)

* Long-short term memory nets are able to learn long-
term dependencies: Hochreiter and Schmidhuber 1997

* Ability to remove or add information to the cell
state regulated by “gates” (avoids grad. vanishing)

)

T * Inputgate (current cell matters) i =¢ (i"i-"‘f"'-*.-zr.., + U h..._u)

Forget (gate O, forget past) fi=¢c (W-""l"'"-’:l‘.'. +~ ) h,,_])
@ ’ ( (&)
Output (how much cell is exposed) o« = o (“ ey -+ U hy )

—
B (o) (o) -
T (dnfl/ o . ) ‘ A/ W) ‘.:R FASE, -
~ b 7). rrie) |
(o] o] [@n] o] *  New memory cell ¢; = tanh (U' xy + U hy )
-b —y

Final memory cell: Co= froci—) +igof

* Figure from Colah’s blog, 2015. ) . |
Final hidden state: he = 0y © tanh{cy)
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Gated Recurrent Unit (GRU)

 Gated RNN by Chung et al, 2014 combines the forget
and input gates into a single “update gate”
* keep memories to capture long-term dependencies

* allow error messages to flow at different strengths

h-f

=0 (W,

* Figure from Colah’s blog, 2015.

zt: update gate — rt: reset gate — ht: regular RNN update

Nikolaos Pappas

Zt = a (IIT;_« ‘

:h‘t—1 ; ;T-t:

hi—1,2]

)
)

71, = tanh (W - [ry * hy_1, x])

y he = (1 — z¢) * hy 1 + 2 * Iy
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Deep Bidirectional Models

 Here RNN but it applies to LSTMs and GRUs too

Y S T S
h | (i) iy D=6 =)
h,—j(W h +V hia+b )
(2) —(1) —(1) (2 «—(i)
h he= fFOW B4V e+ b )
—(L) «(L) »
A y,=gWlh: he ]+c)
A A A A A AA
\ '\ \ \\
X \. \. ‘. \. (Irsoy and Cardie, 2014)

Each memory layer passes an intermediate sequential
representation to the next.
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Convolutional Neural Network
(CNN)

Inpat Sestance

BT « Typically good for images

SEUIE « Convolutional filter(s) is (are) applied
T o every k words:

It ’i';‘- x AN . . . T .

Convolution \ T. J ! (.)7: T !f (W Xri:i_l_}'}/_ 1 —|_ z))

« Similar to Recursive NNs but without
- constraining to grammatical phrases
) only, as Socher et al., 2011

{4

] * no need for a parser (!)
”E’?I-' ‘ il e e less linguistically motivated ?
vi(;:o | _ \ T —
and . = \
do = - \ ;
"t S P (Collobert et al., 2011)

| | | L | (Kim, 2014)

nx X reoresantation of Camvalutonal laver with Vax-aver-time Fully connachad |ayer
sentence with stats ana multiple: filter wicths anc pecling with dropout and
non-static channals feature maps softmax outaut
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Hierarchical Models

e Word-level and sentence-level abstractions

OO00® softmox

Document Representation //’—.’.'Sf!. L )

{IIYIXI) 900909 9008909
(I1) :.ﬁo?oﬁlr [jo?oi:

p , A
£11) |

Document Composition 1 Backward Gated - Backward Gated . Backward Gated
Neural Network Neural Network Neural Network

Forward Gated / , Forward Gated / ,| Forward Gated /

Neural Network Neural Network Neural Network

>
L g

Sentence Representation ( ) (1 ) —— ' )
P .9_9%9_0_2. L11llll) L11lll)
Sentence Compaositian CNN/LSTM CNN/LSTM CNN/LSTM
A
o ,‘"".'l‘-,"-"\_ """" r‘,'T"7'\"7'T‘\",'""-".,"~ (','T_",'""',I'\"T'\_"',"-.'\
$B3ss @3y . @y
Word Representation o o @ @ R R R e 08 e @
vl owy wowhowh (W wE o wiwh wh Wl W

(Tang et al., 2015)
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Attention Mechanism:
Machine Translation

e Can we compress all the needed information in the
last encoder state? Idea: use all the hidden states!
* length proportional to sentence length
« weighted average of all hidden states

 Learns to assign a relevance to each input

s EL- 45 position given current encoder state and the

previous decoder state si = f(si—1,¥i—1,¢).

« soft bilingual alignment model

4
exp (€;4)

— 'l’ , N\ ?
S:,;_l exp(e;x)

1
.

C; — 2 Od.;jhj.
j=1

Qg

— 3
eij = a(si—1, h;)

(Bahdanau et al., 2015)
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Attention Mechanism:
Machine Translation

Economic growth has slowed down in recent years

Das Wirtschaftswachstum hat sich in den letzten Jahren verlangsamt .
Economic growth has slowed down in recent vyears

| | I
La croissance économique s' est ralentie ces derniéres années .

(Bahdanau et al., 2015)
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Attention Mechanism:
Document Classification

» Operates on input word ) o T e
sequence or intermediate o S0 0 : i
b2 _ W2 Yy
hidden states oo P e e
 Learns to focus on relevant o O L ) 1
. . Omn. O”>—<“‘O Xmt
parts of the input with respect “—— | " oescrcosmaons 0G0
to each target label
. I1zat (0T B:)
soft summarization model (B, O) = P(6 = y|B) = TP
. . EZ’:IUM)(O Bix)
* Can be applied at multiple
language levels (Yang et al, 0.% = arg min S (i — 97 (Bi - o(B;, 0)))% + 2(#,0)
’ i=1
2016)

(Pappas and Popescu-Belis, 2014 & 2017)
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Hierarchical attention networks

sentence
273
: °
)
]
'
| [ ' —  — sentenca
| A e, — . encoder
R : ‘T
Ay | 8r,
.” \'\
w// \'\"'Q
T ) \‘\'*w‘__ worc
nz1 /1 oz . Gy attention
,,-:'th--v ¥
— e — \ .
I Uy | o . posdese . S —
1 : | | B —
: ‘t-.'t [ | h i ' r'.-"'
: : s
1 ]
| v ! : word
-4 [ — >
Wohm [ by — ™ 1 ancoder
- *- - . LY W
h.ay wes | wer

Figure 2: Ilierarchical Attention Network.

Nikolaos Pappas

* Very similar hierarchical
— structure as Tang et al., 2015
atertion except average pooling
attention mechanism at the
word and document levels

Uz = ta,nh([/V,m hf?f = bfm)

exp (U Uey)
Zt €Xp (uzt ’U,w)
S; = Z it hit
t
(Yang et al., 2016)
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Attention Mechanism:
Sentiment Classification

GT: 0 Prediction: O
terrible value
ordered pasta entree

GT: 4 Prediction: 4
pork belly = delicious

scallops ?

1 do n't . S 1695 pgood taste but size was an
even .

like appetizer size

scallops , and these were a-m-a-z-i-n-g

: no salad , no bread no vegetable

fun and tasty cocktails _
this was
our and tasty cocktails
our second visit

1 will not go back

next time 1 'm in phoenix , 1 will go
back here

highly recommend

Iigure 5: Documents from Yelp 2013. L.abel 4 means star 5, label () means star 1.

(Yang et al, 2016)
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Memory mechanism: Neural Turing
Machines or Memory Networks

 Combination of recurrent network with external
memory bank: Graves et al. 2014, Weston et.al 2014

71 ¥
W
read
>

T T T T

X0 yO0 X1 yi X2 y2 X2 y2
* Diagram from Christopher Olah’s blog.

Memory is an array of vectors

[ t |t ? 1

A~ ’71
Network A

wrlte wnte
writes and reads

from this memory read reqd
each step
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Residual connections

« Residual learning allows information to '

weight layer

ﬂOW more eaSIly by addlng the InpUt Of ad JFlx) | Yrelu
layer F(x) to its output i.e. F(x) + x welght ayer

* It’s typically used for making connections
from one layer to another ® ® ®

- This improves the training and avoids ~ E&—E@—ED D

N
the vanishing gradient problem @ 3
o . o m »(ZLLS*TTI} ([Lst™ R
» Layer is ignored if not beneficial S % N
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Other DL tricks

« Dropout units at random: is used as a regularization
method to avoid overfitting

* |t allows to over-parameterize a network and still
generalize well

* Layer output normalization: stabilizes the training process
of a model, especially useful for self-attention architecture

« Hyper-parameter optimization: tuning well may have very
huge impact in performance

* and more (e.g. initialization, label smoothing, weight decay)
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Putting everything together:
Flexible modeling

e Sentiment classification e Machine translation e Question answering
e Topic detection e Summarization ® Paraphrase detection
* Spam detection e Image captioning e Relation Extraction

e Named Entity Recognition e Conversational agents

1 Pt —— \I\\\
| | : —— : A
t 1 N I I T T t 1
T T bt 1t Pt f I
[ word Representations v' Multiple levels of abstraction (deep, hierarchical)
|_ Word Sequence Hepresantations .. . . .
[ Anormion Mecheriem v End-to-end training with stochastic gradient descent
[ Decision Mechanism v Good basis for multi-task learning / transfer learning
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Outline of the talk

1. Introduction and Motivation

L

®)

]

A

2. Word Representation Learning CID
@

e Semantic similarity
©)

@

e Traditional and recent approaches T
e Intrinsic and extrinsic evaluation A —

®
I I
A A
3. Word Sequence Modeling CI*DF fg@ . E’%ﬁ
e Essentials: RNNs, Attention, DL tricks o
e Text Classification
e Machine Translation

®
[
A

—>
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Paragraph vectors for
Document Classification

* Learning vectors of paragraphs inspired by word2vec
* trained without supervision on a large corpus
» preferably similar domain as the target

 Two methods: with or without word ordering

Classifier .

| Classifier the cat sat on
Average/Concatenate LI I
EﬂltIED IID%DI] 11T
Paragraph Matrix----- > |ﬁ W W W Paragraph Matrix
| |
Paragraph +the cat sat Darac=ank
id 9= Aps

1d
(Le et al., 2014)
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Paragraph vectors for
Document Classification

* Learned paragraph vectors + logistic regression
* Qutperformed previous method on sentence-level and
document-level sentiment classification

Table 1. The performance of our method compared to other ap- Table 2. 'The performance of Paragraph Vector compared to other
proaches on the Stanford Sentiment Treebank dataset. The error approaches on the IMDB dataset. The error rates of other methods
rates of other methods are reported in (Socher et al., 2013b). are reported in (Wang & Manning, 2012),
Model Lrror rate | Lrror rate ' Model Error rate
;12‘:;3::; (Fl:g ' BoW (bnc) (Maas et al., 2011) 12.20 %
Naive Bayes TER & 59 (5% BoW (bAt'c) (Maas et al., 201 1) 1 1.'?7‘;‘«:9
(Socher et al., 2013b) LDA (Maas et al., 2011) 32.58%
SVMs (Socher et al., 2013h) 20.6% 59.3% Full+-BoW (Maas et al., 2011) 11.67%
Bigram Naive Bayes 16.9% 58.1% . Pull+Unlabeled+BoW (Maas et al., 2011) 11.11%
(S'OChC{ ct al.. 2-0131).) ] WRRBM (Dahl et al., 2012) 12.58%
?:0“}1 Vu'l“; -‘\53;‘;%:)"8 199% | 613% WRRBM + BoW (bng) (Dahl et al,, 2012)  10.77%
(Socher et al., : Wiy, :
Recursive Neural Network 17.6% 56.8% LINB-U{H (\}aﬂg & Manfung’ 2012) _16'45%
(Socher et al., 2013b) MNB-h .(\Mmg & Manmr.\g, 2012) 13416
Matrix Vector- RNN 17-1% 55.6% SVM-uni (Wang & Manning, 2012) 13.05%
(Socher et al.. 2013Db) SVM-bi (Wang & Manning, 2012) 10.84¢%
Recursive Neural Tensor Network 14.6% 54.3% NBSVM-uni (Wang & Manning, 2012) 11.71%
o o) T | NBSVM-bi (Wang & Manning, 2012) 8.78%
aerdp Yeclot : S1.3% | \ Paragraph Vector 7.42%

(Le et al., 2014)
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Convolutional neural network

for Document Classification

Used multiple filter widths
Dropout regularization (randomly dropping portion of

nidden units during back-propagation)

wait
for -'—|
the e i o I
viden — s ) N
and - e e N T\
do L ~t L AN I
nt [ | | | | | HH 7 R I
cromefusen i
rent e -
it —
| | I I |
n % k representation of Convolutional layer with Max-over-lime Fully connected layer
saniance wilk slalic and mualliple iller widlhs and pocling wilh dropoul and
non-static channels feature maps sofimax output
Figure 1: Model archilecture with two channels for an example sentence. .
(Kim et al., 2014)
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Convolutional neural network
for Document Classification

Model MR | SST-1 | SST-2 | Subj | TREC CR | MPQA
CNN-rand 76.1 | 45.0 82.7 | B9.6 | 91.2 T9.8 | 834
CNN-static 81.0 | 45.5 86.8 | 93.0 | 92.8 B1.T | 89.6
CNN-non-static 81.5 | 48.0 87.2 | 934 | 936 843 | 89.5
CNN-multichannel 1.1 474 | 88.1 | 93.2 | 922 85.0 | 89.4
RAE (Socher et al., 2011) 7.7 | 43.2 82.1 86.1
MV-RNN (Socher et al., 2012) 79.0 | 444 82.9 — — — -
RNTN (Socher et al., 2013) - 45.7 85.4 o - - o
DCNN (Kalchbrenner et al., 20014) 18.5 86.8 93.0

Paragraph-Vec (Le and Mikolov, 2014) = 48,7 | 8T8 e - - -
CCAL (Hermann and Blunsom, 2013) 77.8 R7.2
Sent-Parser (Dong et al., 2014) 79.9 — — — — — 86.3
NBSVM (Wang and Manning, 2012) 79.1 03.2 Bl.B | 86.3
MNB (Wang and Manning, 2012) 79.0 — — 93.6 — 80.0 | 86.3
G-Dropout (Wang and Manning, 2013) | 79.0 — — 93.4 — 82.1 | 86.1
F-Dropout (Wang and Manning, 2013) | 79.1 93.6 B1.9 | 36.3
Tree-CRF (Nakagawa et al., 2010) 77.3 — — — — 81.4 | 86.1
CRF-PR (Yang and Cardie, 2014) B2.7

SVMg (Silva et al., 2011) — — — — 95.0 — —

* Not all baseline methods used drop-out though
(Kim et al., 2014)

Nikolaos Pappas 80 /111



Modeling and Summarizing Documents
with a Convolutional Network

 Similar to Kim et al, 2014 however different
* K-max pooling instead of max pooling
* Two layers of convolutions

// \\\\\
= w‘)y

(Denil et al., 2014)
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Modeling and Summarizing Documents
with a Convolutional Network

Model Accuracy
Model Errors BoW (bAt’c) 88.23%
Full+ BoW R8.33%
ISB?;\I'\I% gg Full+Unlabelled+BoW  88.89%
MaxEnt 61 WEREM 87.42%
WRRBM+BoW (bnc) 89.23%
blaxADNW - 76 SVMhi 86.95%
NBoW 68 A ) T
DCNN 45 l\ BS VM-upl 88.29%
— . NBSVM-hi 01.22%
St vode 46 Paragraph Vector 92.58%
Our model 89.38%

Table 1: Left: Number of test set errors on the twitter sentiment dataset. The first block of three
entries 1s from Go er al. [5], the second block is from Kalchbrenner ez al. [13]. Right: Error rates

on the IMDB movie review data sel. The first block 1s from Maas et al. |16], the second [rom
Dahl et al. [3], the third from Wang and Manning [24] and the fourth from Le and Mikolov [15].

(Denil et al., 2014)
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with a Convolutional Network

Proportion Summary Random Margin | ixed Summary Random Margin
100% 83.03 83.03 —

50% 83.53 79.79 +3.74 | Pick 5§ 83.07 80.02 +3.05
33% 83.10 76.72 +6.38 | Pick 4 83.09 79.05 +4.04
25% 82.91 74.87 +8.04 | Pick 3 82.88 77.15 +5.73
20% 82.67 73.20 +9.47 | Pick 2 82.04 74.48 +7.56
First and last 68.62

Table 2: Results of classifying summaries with Naive Bayes. Results labelled proportion indicate
selecting up to the indicated percentage of sentences in the review, and results labelled fixed show
the result of selecting a fixed number of sentences from each. The summary column shows the
accuracy of Naive Bayes on summaries produced by our model. The random column shows the
same model classifying summaries created by selecting sentences at random. The margin column
shows the difference in accuracy between our model and the random summaries.

Modeling and Summarizing Documents

(Denil et al., 2014)
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Modeling and Summarizing Documents
with a Convolutional Network

Craphics is far from the best past of the game, This is the number one best TII game in the series. Next 10 Underground, It deserves strong love. [t is an insane
game, U'here are massive levels, mussive vnlockeble charueters... 108 just & massive gume. Waste your money on this game, This is the kind of money thal s
wasted properly. And cven twugh grapaies suck, thats doesn 't muke a gume good. Actuadly, the gruphics were good ol the tme. Today the graphics are crap, WHO
CARES? As thay say in Canada, This is she fur pame, aye. (You gt to goto Canada in THPSS) Well, T don’t knoa i they say thar, hur they might. wha know s, Wel',
Canadian peopla do. Wait a mumite, 'm pertoag, oft topic. 'This pame rocks. Huy if, play it, enjoy it, love it [Fs PURE BRILLIANCE.

The first was good and ariginal. T was a aet hac horrogfoomedy woves Sa T heard a second one was made and Thad to watch it . Whar really makes this movie work
iz Judd Nelson's charaster and the semetimes clever script. A predty good scripl for a person who wrote the Final Destination fillms and the direction was okay.
Scmetires there’s sceaes where it looks like it was filmed usirg a home videe camera with a grainy - leok. Great made - for - TV movie. It was worth the rental
and probably worth buying just to gel that niec cerie fecling and wateh Judd Nelson®s Stunley duing whal be docs best. I suggest oeweonmers to watch the frst
one before watching the sequel, just so you"-l have an idec what Stanley is like and get a livde history backgrourd

When the movie was released i owas Le biggest hil and it soon became the Blockbuster, Bul honesdy the movie s u ndiculous waleh with a piot which glonlies
a lnser. The movie has & Tag - line - “Preeti Mzadhura, Tyzpa Amara” which means Tove’s Sweet Tt Sacrifice is Tmmartal. Tn the movie the hern of the mavie
((zanesh) sacrifices his lave for the leading lady (Panja (Gandhi) even though the twa laved each other! Hiz pustification is the mezning of the tag, - line. This
movie infueaced so many young, broken hearts that they tound this 'Loser - Lika Sacrific al” attisnde very thouphttul ard hence became the calt movie it s, when they
could have moved on with their lives, Ganesh's acting in the movie is Amateonish, Crass and Childishly stupid. He zctually looks funny Lo a song, (Onde Ondu
Sari ..) wher he’s suppased to "oak al’ stylish and cool. His Tooks don’t help the lezding role either. His hair style is badly done in mast part of the movie. POOTA
CANDIHI CANT ACT. Iler costumes are horrendous in the movie and very inconsistent. The good part about the movie is the excellent cinematography and
brilliant music by Mano Murthy which are actually the true saving graces of the movie. Also the lyrics by Jayan: Kackini aze very well penned. The Directe:
Yogra: Bhat has te ke lauded picturization the soags in a tasteful manaez, Anviway all - in - all except for the sengs, 1ae movie 8 a very oréinary one !!!1!

Aldoend ene L weot throueh o phase some (alot ol) years vgo ol selecting the erappest hommor 2dms in te video shop [or an evening's entertiznment. For some reason,
1 ended up buying this one (probably v. v. cavep). The cheap synth soundirsck is o classie of its Gme and geare, 'L hene’s also o few wery wnusing scenes. Among
then is a scene where a man's heing, attacked and defends himself with a nurhers of unlikely ohjects, it made ne langh at the time (doesn’™ sesr cute so funny in
retrospect but thers you g,0). Apart firam that it's total erap, mind yon. Rut prabably woarth a warch i yan like £lms Tike “Chopping Mall”. Yes, T've seen that oo,

I teed restating the movie tw.ce. I put it in three machines w see what was wrong . Did Steven Seagal's veice change? Did he die during filming and the studio
have to dub the sound with someone who doesn®l even resemble him? Or was the sound on the DVD destroyed? Afer about 10 minwes, vou fnally hear the
actor's real voice. Though throughout most of the Alm, it sounds like the audic was recorded ia a batkrocm. 1 would be ashamed to donate a copy of thi: movie to
Goodwill, if I owned a copy. I rented it, but I will never de that again, 1 will check this database befeze reating anmy more of his movies, all of whick were (meze o
less) good movies. You usually knew whal you were getting when you walched o Steven Seagul movie. [ guess that is no more.

Vertigo co - sters Slewarl (20 his lest tum s 8 romante ead] end Novele elevate this, Stewert’s other “Chrstrmas movie,” rovie o gbove mmd - level enlertanment.
The chemistry hetween the twn stars makes for a fairly maving experience and further revelation can he gleaned from the movie if witcheraft is seen as a
metaphor for the private pain that hampers many peaple’s relationships. AI' in 211, a nice diversion with lependary stars, 7710

(Denil et al., 2014)
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Gated recurrent neural network
for Document Classification

Document Representation

Document Composition

Sentence Representation

Sentence Compaosition

Word Representation
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(Tang et al., 2015)
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Gated recurrent neural network
for Document Classification

Yelp 2013 Yelp 2014 Yelp 2015 IMDB
Accuracy MSE | Accuracy MSE | Accuracy MSE | Accuracy MSE
Majority 0.356 3.06 0.361 3.28 0.369 3.30 0.179 17.46
SVM + Unigrams 0.589 0.79 0.600 0.78 0.611 0.75 0.399 4.23
SVM + Bigrams 0.576 0.75 0.616 0.65 0.624 0.63 0.409 3.74

SVM + TextFeatures (.598 (.68 (.618 0.63 (0.624 ().60 0.405 3.56
SVM + AverageSG 0.543 1.11 0.557 1.08 0.568 1.04 0.319 3.57

SVM + SSWE 0.535 1.12 0.543 1.13 0.554 .11 0.262 9.16
JMARS N/A - N/A — N/A - N/A 4.97
Paragraph Vector 0.577 (.86 (.592 0.70 0.605 (.61 (0.341 4.69
Convolutional NN 0.597 0.76 0.610 0.68 0.615 0.68 0.376 3.30
Conv-GRNN 0.637 (.56 ().655 (.51 ().66() ().50 (0.425 2.7
LSTM-GRNN 0.651 0.50 0.671 0.48 0.676 0.49 0.453 3.00

Table 2: Sentiment classification on Yelp 2013/2014/2015 and IMDB datasets. Evaluation metrics are
accuracy (higher is better) and MSE (lower is better). The best method in each setting is in bold.

(Tang et al., 2015)
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Hierarchical attention networks
for Document Classification

Figure 2: Ilierarchical Attention Network.
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* Very similar hierarchical
structure as Tang et al., 2015
except average pooling
» attention mechanism at the

word and document levels

Uz = tanh(wrw h?f an b'm)

exp (U Uey)
Qi = T
Dt €XD (U Uny)
8; = Z it hiit

(Yang et al., 2016)
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Hierarchical attention networks
for Document Classification

Methods Yelp’13  Yelp’l4 Yelp’l5 IMDB Yahoo Answer Amazon
Zhang et al., 2015 BoW - - 58.0 - 68.9 54.4
BoW TFIDF - - 599 71.0 553
ngrams . - 56.3 68.5 543
ngrams TFIDF - - 54.8 68.5 524
Bag-of-means - - 525 - 60.5 441
Tang et al., 2015 Majority 35.6 36.1 36.9 17.9 - -
SVM + Unigrams 58.9 60.0 61.1 399 - -
SVM + Bigrams 57.6 61.6 62.4 40.9 - -
SVM + TextFeatures 59.8 61.% 62.4 #).5 - -
SVM + AverageSG 54.3 55.7 56.8 319 - -
SVM + SSWIE 53.5 543 554 26.2 - -
Zhang et al., 2015 LSTM - - 58.2 70.8 594
CNN-char - - 62.0 71.2 596
CNN-word - - 60.5 - 71.2 576
Tang et al., 2015 Paragraph Vector 57.7 50.2 60.5 34.1 - -
CNN-word 59.7 61.0 61.5 37.6 - -
Conv-GRNN 63.7 65.5 66.0) 42.5 - -
LSTM-GRNN 635.1 67.1 67.6 45.3 - -
This paper HN-AVE 67.0 693 69.9 478 752 629
HN-MAX 66.9 693 70.1 48.2 752 62.9
HN-ATT 68.2 70.5 71.0 49.4 758 63.6

Table 2: Docurnent Classification, 1n percentage

Nikolaos Pappas

(Yang et al., 2016)
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Outline of the talk

1. Introduction and Motivation

L

®

]

A

2. Word Representation Learning CID
@

e Semantic similarity
©)

@

e Traditional and recent approaches T
e Intrinsic and extrinsic evaluation A —

®
I I
A A
3. Word Sequence Modeling CI?F f‘g . E’%ﬁ
e Essentials: RNNs, Attention, DL tricks o
e Text Classification
e Machine Translation

®
[
A
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RNN encoder-decoder for
Machine Translation

Decoder « GRU as hidden layer
Yr « Maximize the log likelihood

T | L of the target sequence
o = given the source sequence:

1 -
max — E log pe(Y,|X,)
8 N

n=—1

« WMT 2014 (EN—-FR)

Models BLEI
A dev A lest
Baseline 30.64 | 33.30
Encoder RNN 31.20 | 33.87
_ _ _ CSLM + RNN 31.48 | 34.64
Figure 1. An illustration of the proposed RNN CSLM + RNN + WP | 31.50 | 34.54
Encoder—Decoder.
(Cho et al., 2014)
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Sequence to sequence learning
for Machine Translation

A B C D <eos> X Y Z

 LSTM hidden layers instead of GRU
* 4 layers deep instead of shallow encoder-decoder

(Sutskever et al., 2014)
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Sequence to sequence learning

for Machine Translation
« WMT 2014 (EN->FR)

Method test BLEU score (ntstld)
ahdanau et al. [2 28.45
Trick-1: Reverse Sahcanau et al, |2} 0.4
. Baseline System [29] 33.30
the input i Single forward LSTM. beam size 12 26.17 R
ingle forwar M. beam size 12 26.
sequence., — -
4 Smglc reversed LSTM. beam size 12 30.59
Ensemble of S reversed LS TMs. beam size | 33.00
Ensemble of 2 reversed L.STMs. beam size 12 | 33.27
Ensemble of 5 reversed LSTMs, beam size 2 | 34.50
Ensemble of 5 reversed LS TMs, beam size 12 34.81 | Trick-2: Ensemble

Neural Nets.

* PCA projection of the hidden state of the last encoder layer

ik

I

[ ) \
Lol - » - »
T T T

YAy aomees JOiy wh

6 4 : o : 4 8 3 10 *¥

Nikolaos Pappas

(Sutskever et al., 2014)
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Jointly learning to align and
translate for Machine Translation

e Limitation: can we compress all
the needed information in the
last encoder state?

* ldea: use all the hidden states
of the encoder
* |length proportional to that

h, T h, [P ha™ —Hh of the sentence!

« compute a weighted average
of all the hidden states

(Bahdanau et al., 2015)
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“I,I‘“‘ SCore

Jointly learning to align and
translate for Machine Translation

— RNNsearch-50 '. .............. \ ............... . ......... '.:...ii._.' ..............
----- RNNsearch-30 | s : TSN
5H — = RNNenc-50 E .2 .3 .
--- RNNenc-30 | § :
I I I 1 1
() 10 20 30 10 50 60

Sentence ](‘]l‘L’J]I

Nikolaos Pappas

.« WMT 2014 (EN-FR)

Model All No [UNKF®
RNNencdec-30 | 13.93 24.19
RNNsearch-30 | 21.50 31.44
RNNencdec-50 | 17.82 206.71
RNNsearch-50 | 26.75 34.16
RNNsecarch-50* | 28.45 36.15

Moses 33.30 33.63

(Bahdanau et al., 2015)
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Effective approaches to
attention-based NMT

* Global and local attention
* Input-feeding approach N e
» Stacked LSTM instead of single-layer o

X Y Z <eos>

h, I

Attention Layer !

(Luong et al., 2015)
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Multi-source NMT

e Train p(e]f, g) model
directly on trilingual data

« Use it to decode e given
any (f, g) pair

« Take local-attention NMT
model and concatenate
context from multiple
sources

Source 1: UNK Aspekte sind ebenfalls wichtig .

| 7/

Target: UNK aspects are important , tQo .

N A NN

Source 2: Les aspects UNK sont ¢galement importants .

(Zoph and Knight, 2016)
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Multi-source NMT

* Multi-source training improves over individual
French English and German English pairs
* Best: basic concatenation with attention

Target = English

Target = German

Source Method Ppl BLEU
French — 10.3 21.0
German — 159 17.3
French+German | Basic 8.7 23.2
French+German | Child-Sum | 9.0 22.5
French+French | Child-Sum | 10.9 20.7
French Alltention 8.1 25.2
French+German | B-Attent. 5.7 30.0
French+German | CS-Attent. 6.0 29.6

Source Method Ppl | BLEU
French — 2.3 10.6
English — 9.6 3.4
French+English | Basic 9.1 4.5
French+English | Child-Sum | 9.5 4.4
English Attention 7.3 7.6
French+English | B-Attent. 6.9 8.6
French+English | CS-Attent. | 7.1 8.2

Nikolaos Pappas

(Zoph and Knight, 2016)
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Multi-target NMT

« Multi-task learning framework for multiple target

language translation

* Optimization for one to many model

En-Es Decoder
Shared Encoder En-NL Decoder
En-Fr Decoder
h] ’; 11 h; T hi" En-Es En-NL En-Fr En-Es En-NL En-Fr
}11 ;1_. h h -
Mini batches of training dat
(Dong et al., 2015)
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Multi-target NMT

 Improves over NMT
and moses baselines
over WMT 2013 test
* but also on larger

datasets

e Faster and better
convergence in
multiple language
translation

Nmt Baseline | Nmt Multi-Full | Nmt Multi-Partial | Moses

En-Fr 23.89 26.02(+2.13) 25.01(+1.12) 23.83

En-Es 23.28 25.31(+2.03) 25.83(+2.55) 23.58
30

26,59
\
13.76
0
1 3
teraton
—— g | -, ———
(Dong et al., 2015)

Nikolaos Pappas
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Multi-way, Multilingual NMT

* Encoder-decoder model with
multiple encoders and decoders
shared across language pairs ey B

 share knowledge through a i \
universal space
» good for low-resource langs .

* Attention is pair specific, hence

expensive O(L"2)

* instead share attention across &

] . SETTR | n
all pairs! 1 =] hy

......

I
att

Figure: n_th encoder and m_th decoder at timestep t / ¢ makes encoder & decoder states compatible

with the attention mechanism / f _adp makes context vector compatible with the decoder

— all these transformations to support different types of encoders/decoders for different languages!
(Firat et al., 2016)
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Multi-way, Multilingual NMT

e Consistent improvements for low-

* the lower the training data the

bigger the improvement
In large-scale translation improves

* hypothesis: EN appears always as

source or target language for all

Size Single Single+DF Multi
100k 5.06/3.96  4.98/3.99 6.2/5.17
L.T 200k 7.1/6.16 7.21/6.17 8.84/7.53 resource |anguages
5 400k 9.11/7.85 9.31/8.18 11.09/9.98
800k 11.08/996 11.59/10.15 12.73/11.28
o 210k 14.27/13.2 14.65/13.88 16.96/16.26
= 420k 18.32/17.32  18.51/17.62 19.81/19.63
'E 840k 21/19.93 21.69/20.75 22.17/21.93
= 168m  23.38/23.01 23.33/22.86 23.86/23.52 only translation to English
S 210k [1.44/11.57 11.71/11.16  12.63/12.68
O 420k 14.28/14.25 14.88/15.05 15.01/15.67
E 840k 17.09/17.44  17.21/17.88 17.33/18.14
|.68m 19.09/19.6 19.36/20.13 19.23/20.59 pairS 9 better decoder ?
Fr (39m) Cs(12m) De (4.2m) Ru(2.3m) Fi(2m)

Dir —En En—= | = En En—= | =En En— | - En En— —SEn En-—
= [z Single [[ 27.22 2691 [ 21.24 159 [ 2413 2049 | 21.04 1806 1315  9.59
= |8 Multi || 2609 2504 | 21.23 1442 | 23.66 19.17 | 21.48 1789 1297 892
= |z Single 2704 207 12037 1384 | 4 2195 ] 2244 195 1224 9
S = Multi || 28.06 2/88% | 2057 1329 | 2420 2059 | 2344 1939 1261  8.9%
S Single 50.53  -53.38 : -60.69 -69.56 | -54.76 -61.21 : 60.19  -65.81 | -88.44  -91.75
= |2 Multi || -506 -5655|-5446 -7076 | -54.14 6234 | -54.00 -6375 .7484 8802
= |z Single [ 4333 4507 | -60.03  -64.34 | -5TR1  -59.55 | -60.65 -60.29 8866 -94.73

= Multi 222 -46.29 | -54.66 -H4.80 | -53.85 -60.23 | -54.49 -58.63 -TL26 -88.09

Nikolaos Pappas

(Firat et al., 2016)
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Google’s Neural Machine
Translation System

 An encoder, a decoder and an attention network
« 8-layer deep with residual connections
« Refinement with Reinforcement Learning
* Sub-word units...and more, .

GPU1

/(Wu et al., 2016)
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Google’s Neural Machine
Translation System

 EN->FR training took 6 days on 96GPUS !!!! and 3 more days for refinement...

Table 7: Model ensemble resnlts on WMT En—Fr (newsLest2014)

Model DBLEU

WPM-32K (8 models)  40.35

RL-relined WPM-32K (8 models) 41,16
LSTM (6 layers) (31]  35.6

LSTM (6 layers + PosUnk) [31]  37.5
Deep-Att — PosUnk (8 models) 45| 404

Table 5: Single model resulls on WMT En—De (newstes2014)

Model BLEU

CPU decoding time

per sentence (s)

Word  23.12 0.2972

Character (512 nodes)  22.62 0.8011
WPM-3K  23.50 0.2079

WPM-16K  24.36 0.1931

WFPM-32K 2461 0.1882

Mixed Word/Character 2417 (1.3268

PBMT 6  20.7
RNNSearch 37 16.5
RNNSearch-LV 37  16.9
RNNSearch-LV [37  16.9
Deep-Att (45 20.6

Translation guality

Nikolaos Pappas

perfect translation

neural (GNM

phrase-based (PBMT)

English English English  Spanish French  Chinese
Spanish French Chinese English English English

Translation model

e human raters compara tha quality of ranglat ong for a JIVEN SOLK

1 4, with O meaning o |,|o'le']1,‘ oxense translaion’ and 6 m=2an ') |1:‘|‘r ¢t translaticn

(Wu et al., 2016)
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Convolutional Encoder-Decoder

* Outperformed GNMT and was more
efficient in terms of speed, but

* Lacks long-term memory L&A

* Requires meticulous initialization i lﬂ —
schemes and careful normalization ’%ﬁ’%&i@ _

» Requires positional embeddings Qo [ ] ](f:

* Requires more depth (15 layers) NN

WMT’14 English-German BLEU

Luong et al. (2015) LSTM (Word 50K) 20.9

Kalchbrenner et al. (2016) ByteNet (Char) 23.75 v v

Wu et al. (2016) GNMT (Word 80K) 23.12 [_H ] ]
Wu et al. (2016) GNMT (Word pieces) 24 61 R S stimmen
ConvS2S (BPE 40K) 25.16

(Gehring et al., 2017)
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Self-Attention or Transformer

Networks

* Encode/Decode input w.o. using CNNs or LSTMs
* Lower training cost but lack long-term memory

« Stacked self-attention with multiple heads

-
Attention(Q, K, V) = softmax(Q. )14
Vg,
Multillead(Q, K, V) — Concat(heady, ..., heady )W ©

where head; = Attention(QWS=, K

* To capture sequence information it uses

TK

4

VW)

positional embeddings (sinusoids)

v ( ' 2i / Ao
PE(pos’Qi) = sin(pos/10000%/ n‘.odel)
P E(pos,zq:-i-y) = COS(:pOS/lOOOOZ"/dn'o:{cl)

Nikolaos Pappas
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Self-Attention or Transformer
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* Transformer network uses techniques

Best of both worlds: LSTMs &
Transformer Networks

that other models do not use

 Combine strengths of both worlds

CNNs fall behind in BLEU and
convergence speed

(
( Projectian Layer ]
~
rr—{ Add )
1
( Dropout ]
1
Concat ]
1
(  Backward 3NN )
1
( FowadRNN ) ]
o | J
( Dropout ]

1

Source Embedding

Tarpet Embedding

Output Mrehs
|
,——»( Scftmax )
-
4 N
( Add Jey
1
[ Dropaut ]
|
(  FerwarcENN )
1
—»[ Concat ]
- I >,
kf Muti-headed
L Attertion
L ‘{ Forwarc RNN
t
( Dropout
f
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Training
Model Test BLEU | Epochs Time
GNMT 38.95 - -
ConvS2S 7 | 3949 +£0.11 | 62.2 438h
Trans. Base | 3943 L 0,17 | 20.7 90h
Trans. Big® | 40.73 £0.10 | 8.3 120h
RNMT+ 41.00 = 0.05 8.5 120h
Table 1. Results on WMT 14 En—Fr.
R ‘ : | Training
Model Test BLEU | Cpochs Time
GNMT 24.67 - -
ConvS2S  25.01 _0.17 38 20h
Trans. Buse 2726 £ 0.15 38 17h
Trans. Big 2794 £ 0.18 | 26.9 48h
RNMT+ | 2849+ 0.05 | 24.6 40h

Table 2: Results on WMT 14 En—De.

Encoder | Decoder | En—Fr Test BLEU
Trans. Big | Trans. Big 40.73 + (.19

RNMT+ RNMT+ 41.00 + 0.05
Trans. Big | RNMT+ 41.12 L 0.16

RNMT+ | Trans. Big 39.92 1L 0.21]

Table 5: Results for encoder-decoder hybrids.
(Chen & Firat & Bapna et al., 2018)
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Outline of the talk

1. Introduction and Motivation

2. Word Representation Learning

e Semantic similarity
e Traditional and recent approaches
e Intrinsic and extrinsic evaluation

3. Word Sequence Modeling
e Essentials: RNNs, Attention, DL tricks
e Text Classification
e Machine Translation

4. Conclusion and Discussion

Nikolaos Pappas
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Conclusion

« Deep learning for NLP has flourished the last couple of years
= Attention mechanism became popular even outside NLP
= Companies heavily use NLP e.g. machine translation

« Although attention-based models can get us far
= |inguistic structure can get us even further by constraining
models and creating useful inductive biases
= |nspecting and analyzing the learned structures can help us
gain insights about language
= There is still a lot of work to be done on weakly-supervised
and unsupervised learning
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Future Challenges

Transferring knowledge across domains, languages
and different outputs

Contextualizing word representations
Generalizing on unseen examples
Learning from very few examples

Summarization / Entailment / Reasoning
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Discussion / Coding Session

e Learning word embeddings
https://www.tensorflow.org/tutorials/word2vec
https://nlp.stanford.edu/projects/glove/

 Classification using pre-trained word embeddings
https://blog.keras.io/using-pre-trained-word-
embeddings-in-a-keras-model.html

= https://www.tensorflow.org/install/
vy - i
~+ * = https://keras.io/#installation
TensorFlow = https://keras.io/backend/
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