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NLP LinguisticsArtificial 
Intelligence

Natural	Language	Processing
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• NLP	is	a	field	at	the	intersec>on	of	AI	and	linguis>cs	
• Linguis>cs	(structure	of	language,	brain	mappings,	
language	learning)	

• Computa>onal	Linguis>cs	(comp.	models																														
of	language,	tools	for	studying	language)	

•Goals	
✓	Process	large	amounts	of	natural	text	
✓Give	computers	the	ability		to	“understand”													
language	to	perform	useful	tasks	
➡Intrinsic	tasks:	parsing,	language	modeling,	etc	
➡Extrinsic	tasks:	speech	recogni>on,	transla>on,	etc
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Levels	of	processing
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➡ Lexical	level	
• Speech:	phone>c	analysis	
• Vision:	character	recogni>on	

➡ Morphological	&	Syntac8c	levels	
• Word	structure	(forms,	inflec>ons)	
• Sentence	structure	(grammar,	syntax)	

➡ Seman8c	&	Discourse	levels	
• Word	and	sentence	meanings		
• Broad	context,	co-reference	

➡ The	ul>mate	goal	of	a	system	however	is	to	be	able	
translate,	assist,	retrieve,	classify,	communicate
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• Stemming	(reduc>on	of	
word	forms	to	stems)	

• Lemma>za>on	(reduc>on	of	
word	forms	to	base	form	&	
intended	POS	and	meaning	)

Intrinsic	tasks:	Text	segmenta>on	
&	Morphology
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• Tokeniza>on	(split	text	into	
meaningful	segments)	

• Punctua>on	predic>on

Morphemes: smallest linguistic pieces with a grammatical function (inflectional: fish-> fishes, derivational: fish -> 
fishery, compounding: sky + scraper -> skyscraper)  
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• Cons>tuency	parsing	(nested	
phrasal	structures)	

• Language	modeling	(word	
sequence)

Intrinsic	tasks:	Syntax	&	Grammar
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• Part-of-speech	tagging	
(POS	tags	sequence)	

• Dependency	parsing	(role	
specific	structures)

DT:  determiner,  NN: noun, singular, VBD: verb past tense, NP: noun phrase, VP: Verb phrase, ATT:  attributive, 
SBJ: nominal subject, TMP: temporal modifier, PC: prepositional complement 
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• Named	en>ty	recogni>on	

• Coreference	Resolu>on	(find	
expressions	referring	to	the	
same	en>ty	in	a	text)

Intrinsic	tasks:	Seman>cs	&	Discourse
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• Lexical	seman>cs	

• Textual	entailment	
(direc>onal	rela>on	
between	text	fragments)
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Extrinsic	Tasks
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• Machine	transla>on	

•

• Ques>on	answering	
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Extrinsic	Tasks
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• Sen>ment	analysis	

•

• Summariza>on	

• Dialogue	agents	/	Chatbots	
• Topic	recogni>on	
• Search	and	retrieval	
• and	more
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What	is	special	about	natural	
language?
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• Formal	languages	are	sta8c,	explicit	and	non-ambiguous	
• Defined	as	mathema>cal	abstrac>ons	(alphabet,	rules)	
• One	can	explicitly	enumerate	all	well-formed	words	

• Natural	languages	are	dynamic,	implicit	and	ambiguous		
• Exist	in	the	real	world	and	is	spoken	by	its	users	
• Grammar	is	discovered	through	empirical	inves>ga>on	
												“Cathrine	and	John	gave	flowers	to	Mary.		

				She	said	“thanks”	and	put	them	in	a	vase.”														

“I	need	to	talk	to	you	asap.”	(abbreviations)	

“Did	you	download	the	app?”	(neologisms)
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What	is	natural	language?
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• A	naturally	evolved	system	used	by	humans	to	express	thoughts	for	
(i)	communica>ng	with	one	another,	(ii)	learning	from	previous	
(iii)	experiences	and	achieving	their	goals	

• Essen>ally,	it	is	a	discrete	/	symbolic	/	categorical	signaling	system	
✓Symbols	are	invariant	across	signals	(audio,	visual)	

✓Concise	and	grounded	on	shared	knowledge	(entails	ambigui>es)	
		“Did	you	watch	the	finals?	Our	goalkeeper	was	useless!”		

✓Unlimited	expressive	power		(implies	flexible	interpreta>on	rules	
i.e.	meaning	cannot	be	exclusively	expressed	in	the	surface	form)		

“All	politicians	lie.”|	
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• Symbolic	encodings	require	large	vocabularies	
• Sparsity	issues	for	machine	learning	
• Scaling	issues	in	real-world	sejngs	

• Brain	encodings	appear	to	be	a	con>nuous	paRern		
of	ac>va>ons	(distributed	across	neurons)	
➡ Con>nuous	encodings	provides	a	cogni>vely		

plausible	way	to	encode	thoughts	

• Challenges	
• How	to	learn	con>nuous	encodings	that	generalize	well?	
• Can	we	encode	very	complex	thoughts	in	a	single	con>nuous	encoding?		
• Can	we	create	and	reason	over	thoughts	to	solve	any	NLP	task?	
• How	to	transfer	knowledge	from	one	domain,	task,	language	to	another?

What	are	the	main	challenges	in		
language	`understanding’?

�12

Buchweitz et al. 2009
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What	is	Deep	Learning?
• Machine	Learning	boils	down	to	minimizing	an	objec>ve	func>on	
to	increase	task	performance		

• Mostly	relies	on	human-craoed	features	
• Tasks	involve	regression,	classifica>on,		
structured	predic>on,	representa>on	learning	

➡ Representa8on	Learning:	Learn	good	features	or	representa>ons		

➡Deep	Learning:	Machine	learning	algorithms	based																								
on	mul>ple	levels	of	representa>on	or	abstrac>on	
✓ Biologically	inspired	from	how	the	human	brain	works	
✓ Neurons	ac>vate	to	certain	inputs	and	excite	other	neurons	
✓ Can	handle	a	variety	of	input,	such	as	vision,	speech,	and	language

�13



Nikolaos	Pappas 			/111

Deep	Learning:	Why	this	
decade?

• What	enabled	deep	learning	techniques	to	start	
outperforming	other	machine	learning	
techniques	since	Hinton	et	al.	2006?	
• Larger	amounts	of	data	
• Faster	computers	and	mul>core	cpu	and	gpu	
• New	models,	algorithms	and	improvements	
over	“older”	methods	(speech,	vision	and	
language)		
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Deep	Learning	for	speech:	
Phoneme	detec>on
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• The	first	breakthrough	results	
of	“deep	learning”	on	large	
datasets	by	Dahl	et	al.	2010	

• -30%	reduc>on	of	error	
• Most	recently	on	speech	
synthesis	Oord	et	al.	2016	
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Deep	Learning	for	vision:					
Object	detec>on

• Popular	topic	for	DL	
• Breakthrough	on	ImageNet	
by	Krizhevsky	et	al.	2012	
• -21%	and	-51%	error	
reduc>on	at	top	1	and	5	
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Deep	Learning	for	language:						
Ongoing

• Significant	improvements	in	recent	years	across	different	
levels	(phonology,	morphology,	syntax,	seman>cs)	and	
applica>ons	in	NLP	

• Machine	transla8on	(most	notable)	
• Ques8on	answering		
• Sen8ment	classifica8on	
• Summariza8on
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S>ll	a	lot	of	work	to	be	done…																																													
(beyond	supervised	and	“basic”	recogni>on)	
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Deep	Learning	for	language:						
Machine	Transla>on

• Reached	the	state-of-the-art	in	one	year:	Bahdanau	et	al.	
2014,	Jean	et	al.	2014,		Gulcehre	et	al.	2015	
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Neural	network	components	for	
language	`understanding’
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• Distributed	Representa8ons	(word/subword	units)	
• Ability	to	represent	`meaning’	efficiently	

• Abstrac8on	&	Composi8on	(word	sequences)	
• Ability	to	compose	complex	`meanings’	from	simpler	ones		

• AKen8on	Mechanism		
• Ability	to	focus	on/collect	what	is	`relevant’	(input,	memory)	

• Memory	Mechanism		
• Ability	to	store/retrieve	important	previous	informa>on/knowledge	

• Reasoning	Mechanism	
• Ability	to	reason	with	what	is	`relevant’	

• Learning	Mechanism	
• Ability	to	learn	from	past	experience

…
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Outline	of	the	talk
1. Introduc>on	and	Mo>va>on	

•		Basics:	Perceptron,	NNs,	SGD			
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• Tradi>onal	and	recent	approaches		
• Intrinsic	and	extrinsic	evalua>on	

3. Word	Sequence	Modeling	
•	Essen>als:	Encoders,	ARen>on,	DL	tricks	
•	Text	Classifica>on	
•	Machine	Transla>on	

4. Conclusion	and	Discussion
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Basics:	Perceptron

�21
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• Solve	linearly	separable	problems	

• …	but	not	non-linearly	separable	ones.

Basics:	What	can	a	perceptron	
do?• Processes
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Basics:	From	logis>c	regression	
to	neural	networks• Processes

�23



Nikolaos	Pappas 			/111

Basics:	Neural	network
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• Apply	several	regressions	to	
obtain	a	vector	of	outputs	

• The	values	of	the	outputs	
are	ini>ally	unknown	

• No	need	to	specify	
ahead	of	>me	what	
values	the	logis>c	
regressions	are	trying	
to	predict
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• The	intermediate	variables	
are	learned	directly	based	
on	the	training	objec>ve	

• This	makes	them	do	a	good	
job	at	predic>ng	the	target	
for	the	next	layer	

• Result:	able	to	model	non-
lineari>es	in	the	data!

Basics:	Neural	network
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Basics:	Neural	network	with	
mul>ple	layers
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Basics:	Learning	model	
parameters	with	gradient	descend
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• Given	training	data																														find								and																	
that	minimizes	loss	with	respect	to	these	parameters	

• Compute	gradient	with	respect	to	parameters	and	make	
small	step	towards	the	direc>on	of	the	nega>ve	gradient	

• Apply	chain-rule	for	nested	func>ons	e.g.	y=f(g(x))
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Basics:	Stochas>c	gradient	
descent	(SGD)	
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• Approximate	the	gradient	using	a	mini-batch	of	
examples	instead	of	en>re	training	set	

• Online	SGD	when	mini	batch	size	is	one	

• Most	commonly	used	when	compared	to	GD	
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Basics:	Choosing	a	Stochas>c	
Op>miza>on	Algorithm	
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• Several	out-of-the-box	
strategies	for	decaying	
learning	rate	of	an	
objec>ve	func>on:	

• Select	the	best	
according	to	
valida>on	set	
performance
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Training	neural	networks	with	
arbitrary	layers:	Backpropaga>on

�30

• We	s>ll	minimize	the	objec>ve	func>on	but	this	>me	we	
“backpropagate”	the	errors	to	all	the	hidden	layers	

• Chain	rule:	If	y	=	f(u)	and	u	=	g(x),	i.e.	y=f(g(x)),	then:	

• Useful	basic	deriva>ves:		

•

Typically, backprop 
computation is 
implemented in 

popular libraries: 
Theano, Torch, 

Tensorflow  
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Basics:	The	end	
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• Essen>ally,	now	we	have	all	the	basic	“ingredients”	we	need	to	
build	deep	neural	networks	

• However,	we	will	also	need		

➡ Ability	to	learn	from	different	inputs	(spa>al,	sequen>al,	
con>nuous	vs	discrete)	

➡ Overcome	op>miza>on	difficul>es	(exploding/vanishing	
gradient,	informa>on	flow,	convergence)	

➡ Avoid	overfijng	/	Regulariza>on	(dropout,	L2	norm)	

➡ and	other…	
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•	Machine	Transla>on	

4. Conclusion	and	Discussion
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*	Figure	from	Lebret’s	thesis,	EPFL



Nikolaos	Pappas 			/111

Seman>c	similarity:	How	similar	
are	two	linguis>c	items?

�33

• Word	level		
screwdriver	—?—>	wrench																very	similar				
screwdriver	—?—>	hammer														liRle	similar	
screwdriver	—?—>	technician											related	
screwdriver	—?—>	fruit																					unrelated	

• Sentence	level	
The	boss	fired	the	worker	
The	supervisor	let	the	employee	go		very	similar	
The	boss	reprimanded	the	worker				liRle	similar	
The	boss	promoted	the	worker									related	
The	boss	went	for	jogging	today							unrelated
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Seman>c	similarity:	How	similar	
are	two	linguis>c	items?
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• Defined	in	many	levels		
• Words,	word	senses	or	concepts,	phrases,	
paragraphs,	documents	

• Similarity	is	a	specific	type	of	relatedness	
• Related:	topically	or	via	rela>on	
heart	vs	surgeon	
wheel	vs	bike	

• Similar:	synonyms	and	hyponyms	
doctor	vs	surgeon	
bike	vs	bicycle
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Seman>c	similarity:	Numerous	
aRempts	to	answer	that
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*Image from D. Jurgens’ NAACL 2016 tutorial.
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Seman>c	similarity:	Numerous	
aRempts	to	answer	that
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Seman>c	similarity:	Why	do	we	
have	so	many	methods?
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• New	resources	or	methods		
• Datasets	reveal	weakness	in	previous	methods	
• State-of-the-art	is	moving	target	

• Task-specific	similarity	func>ons	
• Performance	in	new	tasks	not	sa>sfactory	

➡ Seman>c	similarity	is	not	the	end-task		
• Pick	the	one	which	yields	best	results	
• Need	for	methods	to	quickly	adapt	similarity
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Two	main	sources	for	
measuring	similarity	

Massive	text	corpora	

�38

Seman8c	resources	and	
knowledge	bases
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How	to	Represent	Word	
`Meaning’?		

• Discrete:	each	dimension	
denotes	a	specific	linguis>c	item	
• Interpretable	dimensions	
• High	dimensionality	

• Con8nuous:	dimensions	are	not	
>ed	to	explicit	concepts	
• Enable	comparison	between	
represented	linguis>c	items		

• Low	dimensionality

�39

dog  = [0, 0, 0, 1, 0, 0]  
      cat   = [0, 1, 0, 0, 0, 0]       
      sim(dog, cat) = 0.0
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How	to	compare	two	linguis>c	
items	in	the	vector	space

• Cosine	of	the	angle	θ	between	A	and	B:	

• Explicit	models	have	a	serious	sparsity	problem	due	to	their	
discrete	or	“k-hot”	vector	representa>ons	

						france		=	[0,	0,	0,	1,	0,	0]		
								england	=	[0,	1,	0,	0,	0,	0]	

											france	is	near	spain	=	[1,	0,	0,	1,	1,	1]	
• cos(france,	england)	=	0.0	
• cos(france,	france	is	near	spain)	=	0.57

�40

A B

θ
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Learning	Word	Representa>ons	
From	Text

• Limita>ons	of	knowledge-based	methods	
• Out-of-context	despite	validity	of	resources	
• Most	lack	of	evalua>on	on	prac>cal	tasks	

• What	if	we	do	not	know	anything	about	words?																							
- Follow	the	distribu>onal	hypothesis	(unsupervised):	“You	
shall	know	a	word	by	the	company	it	keeps”,	Firth	1957	

The	value	of	the	central	bank	increased	by	10%.	
				She	ooen	goes	to	the	bank	to	withdraw	cash.	
					She	went	to	the	river	bank	to	have	picnic	with	her	child.

�41

financial	ins8tu8on

geographical	term
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Simple	approach:	Compute	a	word-
in-context	co-occurence	matrix

• Matrix	of	counts	between	words	and	contexts	

• Limita8ons	
• All	words	have	equal	importance	(imbalance)	
• Vectors	are	very	high	dimensional	(storage	issue)	
• Infrequent	words	have	overly	sparse	vectors	(make	
subsequent	models	less	robust)

�42

words context	 document	
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The	most	standard	approach:	
Dimensionality	Reduc>on

• Perform	singular	value	decomposi>on	(SVD)	of	the	word	
co-occurence	matrix	that	we	saw	previously	

• Typically,	U*Σ	is	used	as	the	vector	space	

�43

*Image from D. Jurgens’ NAACL 2016 tutorial.
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• Syntac>cally	and	seman>cally	related	words	cluster	together	

•

The	most	standard	approach:	
Dimensionality	Reduc>on

�44

*Plots from Rohde et al. 2005
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Dimensionality	reduc>on	with	
Hellinger	PCA

• Perform	PCA	with	Hellinger	distance	on	the	word	co-
occurence	matrix:	Lebret	and	Collobert	2014	

• Well	suited	for	discrete	probability	distribu>ons	(P,	Q)	

• Neural	approaches	are	>me-consuming	(tuning,	data)	
• Instead	compute	word	vectors	efficiently	with	PCA	
• Fine-tuning	them	on	tasks;	beRer	than	neural	

• Limita8ons:	hard	to	add	new	words,	not	scalable	O(mn2)

�45

hRps://github.com/rlebret/hpca
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Dimensionality	reduc>on	with	
weighted	least	squares

• Glove	vectors	by	Pennington	et	al	2014.	Factorizes	the	log	of	
the	co-occurence	matrix:	

• Fast	training,	scalable	to	huge	corpora	but	s>ll	hard	to	
incorporate	new	words	

• Much	beRer	results	than	neural	embedding,	however	under	
equivalent	tuning	it	is	not	the	case:	Levy	and	Goldberg	2015

�46

hRp://nlp.stanford.edu/projects/glove/
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Dimensionality	reduc>on	with	
neural	networks

• The	main	idea	is	to	directly	learn	low-dimensional	word	
representa>ons	from	data	

• Learning	representa>ons:	Rumelhart	et	al	1986	
• Neural	probabilis>c	language	model:	Bengio	et	al	2003		
• NLP	(almost)	from	scratch:	Collobert	and	Weston	2008	

• Recent	methods	are	faster	and	more	simple	
• Con>nuous	Bag-Of-Words	(CBOW)		
• Skip-gram	with	Nega>ve	Sampling	(SGNS)	
• 	word2vec	toolkit:	Mikolov	et	al.	2013	

�47
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• Given	the	middle	word	predict	surrounding	ones	in	a	fixed	
window	of	words	(maximize	log	likelihood)	

word2vec:	Skip-gram	with	
nega>ve	sampling	(SGNS)
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• How	is	the	P(wt|h)	probability	computed?	

• Denominator	is	very	costly	for	big	vocabulary!		
• Instead	it	uses	a	more	scalable	objec>ve,	logQθ	is	a	
binary	logis>c	regression	of	word	w	and	history	h:	

word2vec:	Skip-gram	with	
nega>ve	sampling	(SGNS)
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word2vec:	Con>nuous	Bag-Of-Words	
with	nega>ve	sampling	(CBOW)

• Factorizes	a	PMI	word-context	
matrix:	Levy	and	Goldberg	2014	

• Builds	upon	exis>ng	
methods	(new	decomp.)	

• Improvements	on	a	variety	
of	intrinsic	tasks	such	as	
relatedness,	categoriza>on	
and	analogy:	Baroni	et	al	
2014,	Schnabel	et	al	2015
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• More	efficient	but	the	ordering	informa>on	of	the	words	
does	not	influence	the	projec>on	
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Distributed	representa>ons:	
Encoded	proper>es
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• Encodes	general-purpose	rela>ons	between	words:	present—
past	tense,	singular—plural,	male—female,	capital—country	

• Analogy	between	words	can	be	efficiently	computed	using	basic	
arithme>c	opera>ons	between	vectors	(+,	-)	

       king - man + woman ≈ queen
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Summary:	Learning	word	
representa>ons

• Neural	versus	count-based	methods		
• neural	ones	implicitly	do	SVD	over	a	PMI	matrix	
• similar	to	count-based	when	using	the	same	tricks	

• Neural	methods	appear	to	have	the	edge	(word2vec)	
• efficient	and	scalable	objec>ve	+	toolkit	
• intui>ve	formula>on	(=predict	words	in	context)		

➡ Several	extensions	
• Dependency-based	embeddings:	Levy	and	Goldberg	2014		
• RetrofiRed-to-lexicons	embeddings:	Faruqui	et	al.	2014		
• Sense-aware	embeddings:	Li	and	Jurafsky	2015	
• Visually-grounded	embeddings:	Lazaridou	et	al.	2015		
• Mul>lingual	embeddings:	Gouws	et	al	2015

�52
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Summary:	Learning	word	
representa>ons

How	can	we	benefit	from	them?	
• study	linguis>c	proper>es	of	words	
• inject	general	knowledge	on	downstream	tasks	
• transfer	knowledge	across	languages	or	modali>es	
• representa>ons	of	word	sequences

�53
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Outline	of	the	talk
1. Introduc>on	and	Mo>va>on		

2. Word	Representa>on	Learning	
• Seman>c	similarity	
• Tradi>onal	and	recent	approaches		
• Intrinsic	and	extrinsic	evalua>on	

3. Word	Sequence	Modeling	
•	Essen>als:	RNNs,	ARen>on,	DL	tricks	
•	Text	Classifica>on	
•	Machine	Transla>on	

4. Conclusion	and	Discussion
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*	Figure	from	Colah’s	blog,	2015.
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Language	Modeling

�55

• Computes	the	joint	probability	of	a	sequence	of	words	by	employing	
the	chain	rule	(“How	likely	is	a	text”):		

p(w1,w2,…,wt)	=	p(w1)p(w2|w1)p(w3|w2,w1)…	p(wt|wt-1,wt-2,…)	

• Given	the	observed	text	how	likely	is	the	new	uRerance?	
p(wt|wt-1,…,w1)	

• Hence,	we	can	compare	orderings	(transla>on)	
p(he	likes	apples)	>	p(apples	likes	he)	

or	word	choice	(speech	recogni>on)			
p(he	likes	apples)	>	p(he	licks	apples)	

➡ Exact	decomposi>on	allows	to	learn	complex	distribu>ons	
➡ Many	NLP	tasks	can	be	structured	as	(condi>onal)	language	model

Evalua>on
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• 	N-gram	models:	history	of	observed	words	is	approximated	with	
just	the	previous	n	words	(Markov	model):		

• hard	to	capture	long-term	dependencies	(bounded	memory)	
• does	not	leverage	word	seman>cs	and	rela>onships	

• Neural	n-gram	models:	embed	the	same	fixed	n-gram	history	in	a	
con>nuous	space	(s>ll	Markov	model)	

• captures	beRer	correla>ons	+	smaller	memory	footprint	

• trained	with	MLE

Language	Modeling:									
Markov	Models

�56
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• With	RNN	LMs	we	drop	the	fixed	n-gram	history	and	
compress	the	en>re	history	in	a	fixed	length	vector	

• long	range	correla>ons	are	captured	—	in	theory	
• can	represent	unbounded	dependencies	
• but,	they	are	hard	to	learn	(vanishing	gradient)	

Language	Modeling:									
Recurrent	Neural	Networks	(RNN)

�57
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• Increasing	the	size	of	the	hidden	layer	results	in	a	
quadra>c	increase	in	the	model	size	and	computa>on	

• Stacking	mul>ple	RNNs	increases	the	memory	capacity	
and	representa8onal	ability	with	linear	scaling	

• We	can	also	increase	depth	in	the	>me	dimension	

Language	Modeling:	Deep	RNNs

�58
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• Much	of	the	computa>onal	cost	comes	from	the	classifica>on	
layer	because	its	parameters	depend	on	the	size	of	the	vocabulary:	

• Several	solu>ons	exist	
• Short-lists:	use	most	frequent	words	+	n-gram	LM	for	the	rest	
• Local	short-lists:	subsets	of	vocabulary	specific	to	data	segments	
• Gradient	approxima>ons:	use	Noise	Contras>ve	Es>ma>on	
(NCE)	i.e.	learning	a	binary	classifier	to	dis>nguish	between	data	
samples	from	k	samples	from	a	noise	distribu>on:

Scaling:	Large	Vocabularies

�59
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• Changing	the	input	granularity	and	model	text	at	the	
morpheme	or	character	level	

• Much	smaller	soomax	but	longer	dependencies	
• It	captures	morphological	proper>es	of	words	
• Byte-Pair	Encoding	method	is	most	common	for	
neural	MT	(Sennrich	et	al	2015)

Scaling:	Large	Vocabularies

�60
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• Long-short	term	memory	nets	are	able	to	learn	long-
term	dependencies:	Hochreiter	and	Schmidhuber	1997

Simple	RNN:

*	Figure	from	Colah’s	blog,	2015.

Long	Short	Term	Memory	(LSTM)
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Long	Short	Term	Memory	(LSTM)

�62

• Long-short	term	memory	nets	are	able	to	learn	long-
term	dependencies:	Hochreiter	and	Schmidhuber	1997	

• Ability	to	remove	or	add	informa>on	to	the	cell	
state	regulated	by	“gates”	(avoids	grad.	vanishing)	

•

*	Figure	from	Colah’s	blog,	2015.
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	Gated	Recurrent	Unit	(GRU)

�63

• Gated	RNN	by	Chung	et	al,	2014	combines	the	forget	
and	input	gates	into	a	single	“update	gate”	

• keep	memories	to	capture	long-term	dependencies	
• allow	error	messages	to	flow	at	different	strengths

zt:	update	gate	—	rt:	reset	gate	—	ht:	regular	RNN	update	
*	Figure	from	Colah’s	blog,	2015.
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Deep	Bidirec>onal	Models	

�64

• Here	RNN	but	it	applies	to	LSTMs	and	GRUs	too

(Irsoy and Cardie, 2014)
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• Typically	good	for	images	
• Convolu>onal	filter(s)	is	(are)	applied	
every	k	words:	

• Similar	to	Recursive	NNs	but	without	
constraining	to	gramma>cal	phrases	
only,	as	Socher	et	al.,	2011	
• no	need	for	a	parser	(!)	
• less	linguis>cally	mo>vated	?	

Convolu>onal	Neural	Network	
(CNN)

�65

(Collobert et al., 2011)
(Kim, 2014)
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• Word-level	and	sentence-level	abstrac>ons

	Hierarchical	Models

�66
(Tang et al., 2015)
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ARen>on	Mechanism:			
Machine	Transla>on

�67

(Bahdanau	et	al.,	2015)

• Can	we	compress	all	the	needed	informa>on	in	the	
last	encoder	state?		Idea:	use	all	the	hidden	states!	
• length	propor>onal	to	sentence	length	
• weighted	average	of	all	hidden	states	

• Learns	to	assign	a	relevance	to	each	input	
posi>on	given	current	encoder	state	and	the	
previous	decoder	state		
• soo	bilingual	alignment	model
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ARen>on	Mechanism:				
Machine	Transla>on

�68

(Bahdanau	et	al.,	2015)
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ARen>on	Mechanism:	
Document	Classifica>on

�69

• Operates	on	input	word	
sequence	or	intermediate	
hidden	states		

• Learns	to	focus	on	relevant	
parts	of	the	input	with	respect	
to	each	target	label	

• soo	summariza>on	model	
• Can	be	applied	at	mul>ple	

language	levels	(Yang	et	al,	
2016)

(Pappas	and	Popescu-Belis,	2014	&	2017)
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	Hierarchical	aRen>on	networks	

�70

(Yang	et	al.,	2016)

• Very	similar	hierarchical	
structure	as	Tang	et	al.,	2015	
except	average	pooling	
• aRen>on	mechanism	at	the	

word	and	document	levels	
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ARen>on	Mechanism:	
Sen>ment	Classifica>on

�71

(Yang	et	al,	2016)
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Memory	mechanism:	Neural	Turing	
Machines	or	Memory	Networks

�72

*	Diagram	from	Christopher	Olah’s	blog.

• Combina>on	of	recurrent	network	with	external	
memory	bank:	Graves	et	al.	2014,	Weston	et.al	2014	
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Residual	connec>ons

�73

• Residual	learning	allows	informa>on	to	
flow	more	easily	by	adding	the	input	of	a	
layer	F(x)	to	its	output	i.e.	F(x)	+	x	

• It’s	typically	used	for	making	connec>ons	
	from	one	layer	to	another		

• This	improves	the	training	and	avoids		
the	vanishing	gradient	problem	

• Layer	is	ignored	if	not	beneficial
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Other	DL	tricks

�74

• Dropout	units	at	random:	is	used	as	a	regulariza>on	
method	to	avoid	overfijng		

• It	allows	to	over-parameterize	a	network	and	s>ll	
generalize	well		

• Layer	output	normaliza8on:		stabilizes	the	training	process	
of	a	model,	especially	useful	for	self-aRen>on	architecture		

• Hyper-parameter	op8miza8on:	tuning	well	may	have	very	
huge	impact	in	performance	

• and	more	(e.g.	ini>aliza>on,	label	smoothing,	weight	decay)
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Pujng	everything	together:	
Flexible	modeling	

�75

• Sen>ment	classifica>on	
• Topic	detec>on	
• Spam	detec>on	
• Named	En>ty	Recogni>on	

• Machine	transla>on	
• Summariza>on	
• Image	cap>oning	
• Conversa>onal	agents	

• Ques>on	answering	
• Paraphrase	detec>on	
• Rela>on	Extrac>on	

✓		Mul>ple	levels	of	abstrac>on	(deep,	hierarchical)	
✓		End-to-end	training	with	stochas8c	gradient	descent	
✓		Good	basis	for	mul>-task	learning	/	transfer	learning	
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Outline	of	the	talk
1. Introduc>on	and	Mo>va>on		

2. Word	Representa>on	Learning	
• Seman>c	similarity	
• Tradi>onal	and	recent	approaches		
• Intrinsic	and	extrinsic	evalua>on	

3. Word	Sequence	Modeling	
•	Essen>als:	RNNs,	ARen>on,	DL	tricks	
•	Text	Classifica>on	
•	Machine	Transla>on	

4. Conclusion	and	Discussion
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*	Figure	from	Colah’s	blog,	2015.
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Paragraph	vectors	for	
Document	Classifica>on

�77

• Learning	vectors	of	paragraphs	inspired	by	word2vec	
• trained	without	supervision	on	a	large	corpus		
• preferably	similar	domain	as	the	target	

• Two	methods:	with	or	without	word	ordering		

(Le	et	al.,	2014)
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Paragraph	vectors	for	
Document	Classifica>on

�78

• Learned	paragraph	vectors	+	logis>c	regression	
• Outperformed	previous	method	on	sentence-level	and	

document-level	sen>ment	classifica>on

(Le	et	al.,	2014)
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Convolu>onal	neural	network	
for	Document	Classifica>on

�79

(Kim	et	al.,	2014)

• Used	mul>ple	filter	widths		
• Dropout	regulariza>on	(randomly	dropping	por>on	of	

hidden	units	during	back-propaga>on)
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Convolu>onal	neural	network	
for	Document	Classifica>on
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(Kim	et	al.,	2014)

• Not	all	baseline	methods	used	drop-out	though
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• Similar	to	Kim	et	al,	2014	however	different	
• K-max	pooling	instead	of	max	pooling	
• Two	layers	of	convolu>ons

�81

(Denil	et	al.,	2014)

Modeling	and	Summarizing	Documents	
with	a	Convolu>onal	Network	
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Modeling	and	Summarizing	Documents	
with	a	Convolu>onal	Network	

�82

(Denil	et	al.,	2014)
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Modeling	and	Summarizing	Documents	
with	a	Convolu>onal	Network	

�83

(Denil	et	al.,	2014)
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Modeling	and	Summarizing	Documents	
with	a	Convolu>onal	Network	

�84

(Denil	et	al.,	2014)
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Gated	recurrent	neural	network	
for	Document	Classifica>on

�85

(Tang	et	al.,	2015)
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Gated	recurrent	neural	network	
for	Document	Classifica>on

�86

(Tang	et	al.,	2015)
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Hierarchical	aRen>on	networks	
for	Document	Classifica>on

�87

(Yang	et	al.,	2016)

• Very	similar	hierarchical	
structure	as	Tang	et	al.,	2015	
except	average	pooling	
• aRen>on	mechanism	at	the	

word	and	document	levels	
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Hierarchical	aRen>on	networks	
for	Document	Classifica>on

�88

(Yang	et	al.,	2016)
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Outline	of	the	talk
1. Introduc>on	and	Mo>va>on		

2. Word	Representa>on	Learning	
• Seman>c	similarity	
• Tradi>onal	and	recent	approaches		
• Intrinsic	and	extrinsic	evalua>on	

3. Word	Sequence	Modeling	
•	Essen>als:	RNNs,	ARen>on,	DL	tricks	
•	Text	Classifica>on	
•	Machine	Transla>on	

4. Conclusion	and	Discussion
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*	Figure	from	Colah’s	blog,	2015.



Nikolaos	Pappas 			/111

RNN	encoder-decoder	for	
Machine	Transla>on

�90

• GRU	as	hidden	layer	
• Maximize	the	log	likelihood	

of	the	target	sequence	
given	the	source	sequence:	

• WMT	2014	(EN→FR)

(Cho	et	al.,	2014)
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Sequence	to	sequence	learning	
for	Machine	Transla>on

�91

• LSTM	hidden	layers	instead	of	GRU	
• 4	layers	deep	instead	of	shallow	encoder-decoder

(Sutskever	et	al.,	2014)
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Sequence	to	sequence	learning	
for	Machine	Transla>on

�92

(Sutskever	et	al.,	2014)

• WMT	2014	(EN→FR)

• PCA	projec>on	of	the	hidden	state	of	the	last	encoder	layer
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Jointly	learning	to	align	and	
translate	for	Machine	Transla>on

�93

(Bahdanau	et	al.,	2015)

• Limita8on:	can	we	compress	all	
the	needed	informa>on	in	the	
last	encoder	state?		

• Idea:	use	all	the	hidden	states	
of	the	encoder	
• length	propor>onal	to	that	

of	the	sentence!	
• compute	a	weighted	average	

of	all	the	hidden	states
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Jointly	learning	to	align	and	
translate	for	Machine	Transla>on

�94

(Bahdanau	et	al.,	2015)

• WMT	2014	(EN→FR)
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Effec>ve	approaches	to	
aRen>on-based	NMT

�95

(Luong	et	al.,	2015)

• Global	and	local	aRen>on	
• Input-feeding	approach	
• Stacked	LSTM	instead	of	single-layer
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Mul>-source	NMT

�96

(Zoph	and	Knight,	2016)

• Train	p(e|f,	g)	model	
directly	on	trilingual	data	

• Use	it	to	decode	e	given	
any	(f,	g)	pair	

• Take	local-aRen>on	NMT	
model	and	concatenate	
context	from	mul>ple	
sources
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Mul>-source	NMT

�97

(Zoph	and	Knight,	2016)

• Mul>-source	training	improves	over	individual	
French	English	and	German	English	pairs		

• Best:	basic	concatena>on	with	aRen>on
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Mul>-target	NMT

�98

(Dong	et	al.,	2015)

• Mul>-task	learning	framework	for	mul>ple	target	
language	transla>on	

• Op>miza>on	for	one	to	many	model
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Mul>-target	NMT
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(Dong	et	al.,	2015)

• Improves	over	NMT	
and	moses	baselines	
over	WMT	2013	test		
• but	also	on	larger	
datasets		

• Faster	and	beRer	
convergence	in	
mul>ple	language	
transla>on
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Mul>-way,	Mul>lingual	NMT

�100

(Firat	et	al.,	2016)

• Encoder-decoder	model	with	
mul>ple	encoders	and	decoders	
shared	across	language	pairs	

• share	knowledge	through	a		
universal	space	

• good	for	low-resource	langs	
• ARen>on	is	pair	specific,	hence	

expensive	O(L^2)		
• instead	share	aRen>on	across	

all	pairs!	

Figure:	n_th	encoder	and	m_th	decoder	at	>mestep	t	/	φ	makes	encoder	&	decoder	states	compa>ble	
with	the	aRen>on	mechanism	/	f_adp	makes	context	vector	compa>ble	with	the	decoder																									
→	all	these	transforma>ons	to	support	different	types	of	encoders/decoders	for	different	languages!	
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Mul>-way,	Mul>lingual	NMT

�101

(Firat	et	al.,	2016)

• Consistent	improvements	for	low-
resource	languages	

• the	lower	the	training	data	the	
bigger	the	improvement		

• In	large-scale	transla8on	improves	
only	transla8on	to	English		
• hypothesis:	EN	appears	always	as	
source	or	target	language	for	all	
pairs	→	beRer	decoder	?
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Google’s	Neural	Machine	
Transla>on	System

�102

(Wu	et	al.,	2016)

• An	encoder,	a	decoder	and	an	aRen>on	network	
• 8-layer	deep	with	residual	connec>ons	
• Refinement	with	Reinforcement	Learning	
• Sub-word	units…and	more
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Google’s	Neural	Machine	
Transla>on	System

�103

(Wu	et	al.,	2016)

• EN->FR	training	took	6	days	on	96GPUS	!!!!	and	3	more	days	for	refinement...
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Convolu>onal	Encoder-Decoder

�104

(Gehring	et	al.,	2017)

• Outperformed	GNMT	and	was	more		
efficient	in	terms	of	speed,	but	

• Lacks	long-term	memory	
• Requires	me>culous	ini>aliza>on																																							
schemes	and	careful	normaliza>on	

• Requires	posi>onal	embeddings	
• Requires	more	depth	(15	layers)
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• Encode/Decode	input	w.o.	using	CNNs	or	LSTMs		
• Lower	training	cost	but	lack	long-term	memory	
• Stacked	self-aRen>on	with	mul>ple	heads	

• To	capture	sequence	informa>on	it	uses												
posi>onal	embeddings	(sinusoids)	

Self-ARen>on	or	Transformer	
Networks

�105
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Self-ARen>on	or	Transformer	
Networks

�106

Head	1

Head	2
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• Transformer	network	uses	techniques	
that	other	models	do	not	use		

• Combine	strengths	of	both	worlds	
• CNNs	fall	behind	in	BLEU	and	
convergence	speed

Best	of	both	worlds:	LSTMs	&	
Transformer	Networks

�107
(Chen	&	Firat	&	Bapna	et	al.,	2018)
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Outline	of	the	talk
1. Introduc>on	and	Mo>va>on		

2. Word	Representa>on	Learning	
• Seman>c	similarity	
• Tradi>onal	and	recent	approaches		
• Intrinsic	and	extrinsic	evalua>on	

3. Word	Sequence	Modeling	
•	Essen>als:	RNNs,	ARen>on,	DL	tricks	
•	Text	Classifica>on	
•	Machine	Transla>on	

4. Conclusion	and	Discussion
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Conclusion

�109

• Deep	learning	for	NLP	has	flourished	the	last	couple	of	years	
➡ ARen>on	mechanism	became	popular	even	outside	NLP	
➡ Companies	heavily	use	NLP	e.g.	machine	transla>on	

• Although	aRen>on-based	models	can	get	us	far		
➡ Linguis>c	structure	can	get	us	even	further	by	constraining	

models	and	crea>ng	useful	induc>ve	biases	
➡ Inspec>ng	and	analyzing	the	learned	structures	can	help	us	

gain	insights	about	language	
➡ There	is	s>ll	a	lot	of	work	to	be	done	on	weakly-supervised	

and	unsupervised	learning
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Future	Challenges
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• Transferring	knowledge	across	domains,	languages	
and	different	outputs	

• Contextualizing	word	representa>ons	

• Generalizing	on	unseen	examples	

• Learning	from	very	few	examples		

• Summariza>on	/	Entailment	/	Reasoning
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Discussion	/	Coding	Session

�111

• Learning	word	embeddings	
				hRps://www.tensorflow.org/tutorials/word2vec	
				hRps://nlp.stanford.edu/projects/glove/	

• Classifica>on	using	pre-trained	word	embeddings	
hRps://blog.keras.io/using-pre-trained-word-
embeddings-in-a-keras-model.html

➡  https://www.tensorflow.org/install/

➡  https://keras.io/backend/

➡  https://keras.io/#installation


