Recommendation algorithms 00

Experiments 000

Combining Content with User Preferences for TED Lecture Recommendations

CBMI 2013

Nikolaos Pappas Andrei Popescu-Belis

inEvent project (https://www.inevent-project.eu) Idiap Research Institute, Martigny, Switzerland Wednesday 19th June, 2013

The TED collection	Recommendation algorithms 00	Experiments 000	Conclusions
Motivation			

Recommender systems are information filtering systems that seek to predict ratings (preferences) for items that might be of interest to a user.

- divided in *content-based*(CB), *collaborative filtering*(CF) and *hybrid*
- plenty of data available on certain domains (movies, music, etc.)
- fewer for multimedia content (e.g. VideoLectures)

Questions - multimedia recommendations

- \rightarrow How to perform quantitative experiments with 'objective' measures?
- \rightarrow Which data to use for evaluation?
- \rightarrow How important is content vs. collaborative information?

The TED collection	Recommendation algorithms 00	Experiments 000	Conclusions
Summary			

Recommendation methods for scientific talks

- Istudying the merits of CB and CF methods over TED talks
- evaluating in two different scenarios: cold-start, non-cold-start (absence or presence of collaborative information)

Main contributions

- $\rightarrow\,$ Introduction of TED dataset for multimedia recommendations
- $\rightarrow~$ Definition of evaluation tasks over TED
- $\rightarrow\,$ Combining content features with user preferences
- $\rightarrow\,$ First benchmark scores on this promising dataset

The TED collection	Recommendation algorithms	Experiments	Conclusions

Recommendation algorithms

3 Experiments

4 Conclusions

The TED collection	Recommendation algorithms	Experiments	Conclusions
•000			

TED is an online repository of lectures (ted.com) which contains:

- audiovisual recordings of talks with extended metadata
- user-contributed material (comments, favorites)

	Total	Per Talk		Total Per Talk		Per Activ	e User
Attribute	Count	Average	Std	Average	Std		
Talks	1,149	-	-	-	-		
Speakers	961	-	-	-	-		
Users	69,023	-	-	-	-		
Active Users	10,962	-	-	-	-		
Tags	300	5.83	2.11	-	-		
Themes	48	2.88	1.06	-	-		
Related Videos	3,002	2.62	0.74	-	-		
Transcripts	1,102	0.95	0.19	-	-		
Favorites	108,476	94.82	114.54	9.89	20.52		
Comments	201,934	176.36	383.87	4.87	23.42		

We crawled (Apr 2012), formatted and distributed the TED metadata: https://www.idiap.ch/dataset/ted/ (in agreement with TED)

The TED collection	Recommendation algorithms	Experiments	Conclusions
0●00	00	000	
Ground truth			

Typical problem: Given a rating matrix $R(|U| \times |I|)$ where R_{ui} is user's u explicit rating to item i; the goal is to find the value of missing ratings in R.

- Categorical ratings (e.g. good, bad)
- Numerical ratings (e.g. 1 to 5 stars)
- Unary or binary ratings (e.g. favorites or like/dislike)

On TED dataset we deal with unary ratings from user favorites:

$$R_{u,i} = \begin{pmatrix} r_{1,1} & r_{1,2} & \cdots & r_{1,n} \\ r_{2,1} & r_{2,2} & \cdots & r_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{m,1} & r_{m,2} & \cdots & r_{m,n} \end{pmatrix} e.g. \begin{pmatrix} 1 & 1 & ? & ? \\ ? & ? & ? & 1 \\ 1 & 1 & ? & ? \\ 1 & ? & 1 & ? \end{pmatrix}$$

- \rightarrow uncertainty about the negative class (one-class problem)
- \rightarrow related/similar talks available (TED editorial staff)

The TED collection	Recommendation algorithms	Experiments	Conclusions
00●0	00	000	
Recommendation	tasks		

Personalized recommendation task

<u>Ground-truth</u>: user favorites (binary values), namely "1" for action and "0" or "?" for inaction (not seen, or seen and not liked).

 \rightarrow Predict the N most interesting items for each user (top-N)

② Generic recommendation task

Ground-truth: related talks per talk assigned by TED editorial staff.

 \rightarrow Predict the N most similar items to a given one (top-N)

How to evaluate?

As a top-N ranking problem: train a recommender (ranker) on fragments of user history and evaluate the performance on the held-out ones

- $\rightarrow\,$ for each user all items have to ordered based on a scoring function
- \rightarrow information retrieval metrics to capture the performance (P, R, F1)

The TED collection 000● Recommendation algorithms 00

Experiments 000 Conclusions

Comparison with other collections

Collection	Basic	Sp.	Trans.	Tags	Impl.	Expl.	CC
VideoLectures	\checkmark	\checkmark	\checkmark		\checkmark		
KhanAcademy	\checkmark	\checkmark			\checkmark		
Youtube EDU	\checkmark		\checkmark		\checkmark	\checkmark	
DailyMotion	\checkmark				\checkmark	\checkmark	
TED	\checkmark						

- Basic: Title, Description
- Sp.: Speaker
- Tra.: Transcript
- Tags: Categories in form of keywords
- Impl.: Implicit feedback (e.g. comments or views)
- Expl.: Explicit feedback (e.g. ratings, favorites or bookmarks)
- CC: Creative Commons Non-Commercial License

The TED collection	Recommendation algorithms	Experiments	Conclusions

2 Recommendation algorithms

Recommendation algorithms

Experiments 000

Representations of TED talks

Each talk $t_j \in I$ is represented as a feature vector $t_j = (w_1, w_2, ..., w_{ij})$, where each position *i* corresponds to a word of the vocabulary $w \in V$. Pre-processing:

 $I \rightarrow \text{Tokenization} \rightarrow \text{Stop words removal} \rightarrow \text{Stemming} \rightarrow V$

Semantic Vector Space Models

Dimensionality reduction (LSI and RP), topic modeling (LDA) and concept-spaces built with external knowledge (ESA) vs. baseline (TF-IDF).

- diminish the curse of dimensionality effect
- proximity is interpreted as *semantic* relatedness

Comparison of their effectiveness in the recommendation task

Recommendation algorithms $o \bullet$

Experiments 000 Conclusions

Recommendation algorithms

Three types of nearest neighbor (NN) models for a given user u and talk i: **Content-based**

$$\hat{r}_{ui} = \sum_{j \in D^k(u;i)} s_{ij}, \tag{1}$$

Collaborative filtering

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in D^k(u;i)} d_{ij}(r_{uj} - b_{uj}),$$
 (2)

$$b_{ui} = \mu + b_u + b_i, \tag{3}$$

Combined

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in D^{k}(u;i)} s_{ij}(r_{uj} - b_{uj}),$$
(4)

 d_{ij} : collaborative similarity of two items computed on the co-rating matrix. s_{ij} : the content similarity of two items in the given vector space.

The TED collection	Recommendation algorithms	Experiments	Conclusions

Recommendation algorithms

3 Experiments

Conclusions

The TED collection	Recommendation algorithms 00	Experiments ●00	Conclusions
Parameter and fe	ature selection		

- \rightarrow Parameters fixed for all NN models (k=3, λ = 100)
 - \rightarrow Parameters for VSMs optimized (dimensionality k for LSI, RP, LDA and priors α , β for LDA)
 - $\rightarrow~$ Features are the words extracted from the metadata

Method	Optimal Features	Performance (%)		
		P@5	R@5	F@5
LDA (t=200)	Title, desc., TED event,	1.63	1.96	1.78
	speaker (TIDE.TESP)			
TF-IDF	Title (TI)	1.70	2.00	1.83
RP (t=5000)	Description (DE)	1.83	2.25	2.01
LSI (t=3000)	Title (TI)	1.86	2.27	2.04
ESA	Title, description (TIDE)	2.79	3.46	3.08

Table : CB performance with 5-fold c.-v. on the training set.

The TED collection	Recommendation algorithms 00	Experiments o●o	Conclusions
E			

Ranking based on the average F@5 over all methods with cross-validation.

The TED collection	Recommendation algorithms	Experiments	Conclusions
		000	

Experiments on held-out data

semantic spaces outperform keyword-based ones within CB methods

2 combined methods achieve reasonable performance compared to CF ones and they are applicable in both settings with good performance

The TED collection	Recommendation algorithms 00	Experiments 000	Conclusions

- New dataset for lecture recommendation evaluation (ground-truth and rich content)
- Two recommendation benchmarks

Conclusions

- First experiments on personalized TED lecture recommendations
- We proposed to combine semantic spaces with CF methods
 - $\rightarrow\,$ perform well in cold-start settings and can be used reasonably well in non-cold-start settings
 - $\rightarrow\,$ applicable to multimedia datasets, where new items are inserted frequently (cold-start)

Recommendation algorithms 00

Experiments 000 Conclusions

End of presentation

Thank you! Any questions?