Distinguishing the Popularity Between Topics: A System for Up-to-date Opinion Retrieval and Mining in the Web

Nikolaos Pappas, Georgios Katsimpras, Efstathios Stamatatos

March 26, 2013

Outline

- Motivation
- 2 The proposed system
 - Topic-related document discovery
 - Opinion retrieval and mining
- Experimental study (Qualitative)
 - Distinguishing topic popularity
 - Ranking of topics
- 4 Conclusions

Motivation

Huge number of user-generated text in the Web

- Many applications based on sentiment analysis e.g. brand analysis, marketing effectiveness
- Most approaches focus on fixed collections or certain domains e.g. Twitter, Facebook, Blogspot
- Opinion analysis can differ according to the examined web genres e.g. articles, blogs, forums

Challenges

- ightarrow Collecting domain-independent opinionated texts dynamically from the Web
- → Providing genre-based analysis of opinions
- → Comparing popularity of topics

The proposed system

Synthesis of IR and NLP components:

- Discovery of topic-related documents dynamically from the Web
- Detection of user-generated content regions inside the related pages
- Identification of topic-related pages with confidence score
- Subjectivity and polarity detection on the detected regions

Contributions

- → Up-to-date opinionated text retrieval and mining
- → Genre-based analysis of sentiment
- → Efficient estimation of total sentiment

Evaluation: Qualitative analysis with real-world experiments

Synthesis of IR and NLP components

Given a topic query (keyword form):

- → collection of seed URLs from major search engines
- → topic-(T) and genre-related (G) focused crawling [PKS12a]
- → scoring of unvisited pages using link analysis $Linkscore(p) = w_T * Linkscore_T(p) + w_G * Linkscore_G(p)$
- → targeting to web genres (news, blogs, discussions)
 - highly likely to contain opinions

Opinion retrieval and mining

- Page segmentation and filtering
- Sentiment analysis

Page segmentation and filtering

Given a web page:

- → segmentation into coherent parts and noise removal (e.g. ads) [PKS12b]
- rule-based classification and region extraction of three classes
- → confidence of page relevance based on the topic presence (keyword(s)) in the detected regions (weighted linear combination)

Sentiment analysis

For each sentence in the detected regions:

- → subjectivity classification (bootstrap with Pattern-based learner) [RW03]
- polarity classification (bootstrap with SVM) [WWH05, MW09]
- total sentiment estimation

$$TotalScore(D) = \sum_{d_j \in D} \left(\sum_{r_{ij} \in d_j} Score(r_{ij}) \right) \in R$$
 (1)

$$NormalizedScore(D) = \sum_{d_j \in D} \left(\sum_{r_{ij} \in d_j} \frac{Score(r_{ij})}{|r_{ij}|} \right) \in R$$
 (2)

SentimentRatio(D) =
$$\frac{|r_{pos}|}{|r_{pos}| + |r_{neg}|} \in [0, 1]$$
 (3)

Case study 1: Distinguishing topic popularity

Case study 1: Opinions per detected regions

Case study 2: Ranking of topics

Rank	Soft drink	Likes	Talking	Both	TotalScore	NormalizedScore
1 _{st}	Dr. Pepper	12,093,912	187,011	12,280,923	7up	Dr. Pepper
2 _{nd}	Pepsi	11,835,244	236,105	12,071,349	Dr. Pepper	Pepsi
3 _{rd}	Sprite	8,574,563	50,192	8,624,755	Sprite	Fanta
4 _{th}	Fanta	2,650,072	84,080	2,734,152	Fanta	7up
5 _{th}	7up	785,967	75,996	861,963	Pepsi	Sprite
	IM Client	Followers	-	-	TotalScore	NormalizedScore
1 _{st}	Google Talk	405,818	=	-	Google Talk	Google Talk
2 _{nd}	Skype	367,385	=.	-	Skype	Skype
3 _{rd}	MSN	82,896	-	-	MSN	MSN
4 _{th}	AOL	14,431	=.	-	AOL	ICQ
5 _{th}	ICQ	14,138	=	-	ICQ	AOL
				NDCG:	0.841	0.993

Conclusions

- up-to-date discovery of opinionated text for given topics
- genre-aware sentiment analysis of opinions
- real-world studies
 - distinguishing the popularity between topics
 - comparative results for several topics
 - efficient popularity estimation with few hundred pages
- potential application to other text analysis tasks

Implemented components available online: https://github.com/nik0spapp/icrawler

End of Presentation

Thank you! Any questions?

References

Dietrich Klakow M Wiegand, *Bootstrapping supervised machine-learning polarity classifiers with rule-based classification*, Proc. of the ECAI-Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA), 2009.

Nikolaos Pappas, Georgios Katsimpras, and Efstathios Stamatatos, *An agent-based focused crawling framework for topic- and genre-related Web document discovery*, 24th IEEE Int. Conf. on Tools with Artificial Intelligence (Athens, Greece), 2012.

Nikolaos Pappas, Georgios Katsimpras, and Efstathios Stamatatos, Extracting informative textual parts from Web pages containing user-generated content, 12th Int. Conf. on Knowledge Management and Knowledge Technologies (Graz, Austria), 2012.

Ellen Riloff and Janyce Wiebe, *Learning extraction patterns for subjective expressions*, Proc. of the 2003 Conf. on Empirical methods in natural language processing, EMNLP '03, 2003, pp. 105–112.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann, *Recognizing* contextual polarity in phrase-level sentiment analysis, Proc. of the Conf. on Human Language Technology and Empirical Methods in Natural