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Outline	of	the	talk
1. Recap:	Word	Representa6on	Learning	

2. Mul6lingual	Word	Representa6ons	
• Alignment	models	
• Evalua6on	tasks	

3. Mul6lingual	Word	Sequence	Modeling	
• Essen6als:	RNN,	LSTM,	GRU	
• Machine	Transla6on	
• Document	Classifica6on	

4. Summary
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*	Figure	from	Lebret's	thesis,	EPFL,	2016
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Disclaimer

3

• Research	highlights	rather	than	in-depth	analysis	
• By	no	means	exhaus6ve	(progress	too	fast!)	
• Tried	to	keep	most	representa6ves	

• Focus	on	feature	learning	and	two	major	NLP	tasks	
• Not	enough	6me	to	cover	other	exci6ng	tasks:	

• Ques6on	answering	
• Rela6on	classifica6on	
• Paraphrase	detec6on		
• Summariza6on	
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Recap:	Learning	word	
representa6ons	from	text

• Why	should	we	care	about	them?	
• tackles	curse	of	dimensionality	
• captures	seman6c	and	analogy	rela6ons	of	words	
• captures	general	knowledge	in	an	unsupervised	way
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  king - man + woman ≈ queen
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Recap:	Learning	word	
representa6ons	from	text

• How	can	we	benefit	from	them?	
• study	linguis6c	proper6es	of	words	
• inject	general	knowledge	on	downstream	tasks	
• transfer	knowledge	across	languages	or	modali6es	
• compose	representa6ons	of	word	sequences
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Recap:	Learning	word	
representa6ons	from	text

• Which	method	to	use	for	learning	them?	
• neural	versus	count-based	methods		

➡ neural	ones	implicitly	do	SVD	over	a	PMI	matrix	
➡ similar	to	count-based	when	using	the	same	tricks	

• neural	methods	appear	to	have	the	edge	(word2vec)	
➡ efficient	and	scalable	objec6ve	+	toolkit	
➡ intui6ve	formula6on	(=predict	words	in	context)
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Recap:	Con6nuous	Bag-of-
Words	(CBOW)

7



Nikolaos	Pappas 			/88

Recap:	Con6nuous	Bag-of-
Words	(CBOW)
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Recap:	Learning	word	
representa6ons	from	text

• What	else	can	we	do	with	word	embeddings?	
• dependency-based	embeddings:	Levy	and	Goldberg	2014		
• retrofijed-to-lexicons	embeddings:	Faruqui	et	al.	2014		
• sense-aware	embeddings:	Li	and	Jurafsky	2015	
• visually-grounded	embeddings:	Lazaridou	et	al.	2015		
• mul6lingual	embeddings:	Gouws	et	al	2015

9



Nikolaos	Pappas 			/88

Outline	of	the	talk
1. Recap:	Word	Representa6on	Learning	

2. Mul6lingual	Word	Representa6ons	
• Alignment	models	
• Evalua6on	tasks	

3. Mul6lingual	Word	Sequence	Modeling	
• Essen6als:	RNN,	LSTM,	GRU	
• Machine	Transla6on	
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4. Summary
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*	Figure	from	Gouts	et	al.,	2015.
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Learning	cross-lingual	word	
representa6ons

• Monolingual	embeddings	capture	seman6c,	syntac6c	
and	analogy	rela6ons	between	words	

• Goal:	capture	this	rela6onships	two	or	more	languages

11

*	Figure	from	Gouts	et	al.,	2015.
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Supervision	of	cross-lingual	
alignment	methods

• Parallel	sentences	for	MT:	Guo	et	al.,	2015	
Sentence	by	sentence	and	word	alignments	

• Parallel	sentences:	Gouws	et	al.,	2015	
Sentence	by	sentence	alignments	

• Parallel	documents:	Søgaard	et	al.,	2015	
Documents	with	topic	or	label	alignments	

• Bilingual	dicHonary:	Ammar	et	al.,	2016		
Word	by	word	transla6ons	

• No	parallel	data:	Faruqui	and	Dyer,	2014	
Really!
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Annotation 
cost

low

high
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Cross-lingual	alignment	with	no	
parallel	data

• 	
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Cross-lingual	alignment	with	
parallel	sentences

• 	
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Cross-lingual	alignment	with	
parallel	sentences
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(Gows	et	al.,	2016)
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Cross-lingual	alignment	with	
parallel	sentences	for	MT
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Unified	framework	for	analysis	
of	cross-lingual	methods
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• Minimize	monolingual	objec6ve	
• Constraint/Regularize	with	bilingual	objec6ve
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Evalua6on:	Cross-lingual	document	
classifica6on	and	transla6on
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(Gows	et	al.,	2015)
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Bonus:	Mul6lingual	visual	
sen6ment	concept	matching
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(Pappas	et	al.,	2016)

concept	=	adjec6ve-noun-phrase	(ANP)
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Mul6lingual	visual	sen6ment	
concept	ontology
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(Jou	et	al.,	2015)
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Word	embedding	model

21

(Pappas	et	al.,	2016)
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Mul6lingual	visual	sen6ment	
concept	retrieval
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(Pappas	et	al.,	2016)
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Mul6lingual	visual	sen6ment	
concept	clustering
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(Pappas	et	al.,	2016)
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Mul6lingual	visual	sen6ment	
concept	clustering
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(Pappas	et	al.,	2016)
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Discovering	interes6ng	clusters:	
Mul6lingual

25

(Pappas	et	al.,	2016)(Pappas	et	al.,	2016)
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Discovering	interes6ng	clusters:	
Western	vs.	Eastern
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(Pappas	et	al.,	2016)
(Pappas	et	al.,	2016)
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Discovering	interes6ng	clusters:	
Monolingual
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(Pappas	et	al.,	2016)
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Evalua6on:	Mul6lingual	visual	
sen6ment	concept	analysis
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• Aligned	embeddings	are	bejer	than	transla6on	in	
concept	retrieval,	clustering	and	sen6ment	predic6on



Nikolaos	Pappas 			/88

Conclusion

29

• Aligned	embeddings	are	cheaper	than	transla6on	and	
usually	work	bejer	than	it	in	several	mul6lingual	or	
crosslingual	NLP	tasks	without	parallel	data	

• document	classifica6on	Gows	et	al.,	2015	

• named	en6ty	recogni6on	Al-Rfou	et	al.,	2014	

• dependency	parsing	Guo	et	al.,	2015	

• concept	retrieval	and	clustering	Pappas	et	al.,	2016
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*	Figure	from	Colah’s	blog,	2015.
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Language	Modeling

31

• Computes	the	probability	of	a	sequence	of	words	or	
simply	“likelihood	of	a	text”:	P(w1,	w2,		…,	wt)	

• N-gram	models	with	Markov	assump6on:		

• Where	is	it	useful?	
• speech	recogni6on		
• machine	transla6on	
• POS	tagging	and	parsing

• What	are	its	limitaHons?	
• unrealis6c	assump6on		
• huge	memory	needs	

• back-off	models
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Recurrent	Neural	Network	(RNN)
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• Neural	language	model:	

• What	are	its	main	limitaHons?	
• vanishing	gradient		problem	(error	doesn’t	propagate	far)	
• fail	to	capture	long-term	dependencies	

• tricks:	gradient	clipping,	iden6ty	ini6aliza6on	+	ReLus
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• Long-short	term	memory	nets	are	able	to	learn	long-
term	dependencies:	Hochreiter	and	Schmidhuber	1997

Simple	RNN:

*	Figure	from	Colah’s	blog,	2015.

Long	Short	Term	Memory	(LSTM)
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Long	Short	Term	Memory	(LSTM)

34

• Long-short	term	memory	nets	are	able	to	learn	long-
term	dependencies:	Hochreiter	and	Schmidhuber	1997	

• Ability	to	remove	or	add	informa6on	to	the	cell	
state	regulated	by	“gates”

*	Figure	from	Colah’s	blog,	2015.
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Gated	Recurrent	Unit	(GRU)

35

• Gated	RNN	by	Chung	et	al,	2014	combines	the	forget	
and	input	gates	into	a	single	“update	gate”	

• keep	memories	to	capture	long-term	dependencies	
• allow	error	messages	to	flow	at	different	strengths

zt:	update	gate	—	rt:	reset	gate	—	ht:	regular	RNN	update	
*	Figure	from	Colah’s	blog,	2015.
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Deep	Bidirec6onal	Models	

36

• Here	RNN	but	it	applies	to	LSTMs	and	GRUs	too

(Irsoy and Cardie, 2014)
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Convolu6onal	Neural	Network	(CNN)

37

(Collobert et al., 2011)
(Kim, 2014)

• Typically	good	for	images	
• Convolu6onal	filter(s)	is	(are)	
applied	every	k	words:	

• Similar	to	Recursive	NNs	but	without	
constraining	to	gramma6cal	phrases	
only,	as	Socher	et	al.,	2011	
• no	need	for	a	parser	(!)	
• less	linguis6cally	mo6vated	?	
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Hierarchical	Models	

38
(Tang et al., 2015)

• Word-level	and	sentence-level	modeling	with	
any	type	of	NN	layers
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Ajen6on	Mechanism	for	
Machine	Transla6on

39

• Chooses	“where	to	look”	or	learns	to	assign	a	relevance	
to	each	input	posi6on	given	encoder	hidden	state	for	
that	posi6on	and	the	previous	decoder	state	

• learns	a	sou	bilingual	alignment	model

(Bahdanau	et	al.,	2015)
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Ajen6on	Mechanism	for	
Document	Classifica6on

40

• Operates	on	input	word	sequence	(or	intermediate	
hidden	states:	Pappas	and	Popescu-Belis	2016)	

• Learns	to	focus	on	relevant	parts	of	the	input	with	
respect	to	the	target	labels	

• learns	a	sou	extrac6ve	summariza6on	model

(Pappas	and	Popescu-Belis,	2014)
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*	Figure	from	Colah’s	blog,	2015.
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RNN	encoder-decoder	for	
Machine	Transla6on

42

• GRU	as	hidden	layer	
• Maximize	the	log	likelihood	

of	the	target	sequence	
given	the	source	sequence:	

• WMT	2014	(EN→FR)

(Cho	et	al.,	2014)
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Sequence	to	sequence	learning	
for	Machine	Transla6on

43

• LSTM	hidden	layers	instead	of	GRU	
• 4	layers	deep	instead	of	shallow	encoder-decoder

(Sutskever	et	al.,	2014)
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Sequence	to	sequence	learning	
for	Machine	Transla6on

44

(Sutskever	et	al.,	2014)

• WMT	2014	(EN→FR)

• PCA	projec6on	of	the	hidden	state	of	the	last	encoder	layer



Nikolaos	Pappas 			/88

Jointly	learning	to	align	and	
translate	for	Machine	Transla6on

45

(Bahdanau	et	al.,	2015)

• LimitaHon:	can	we	compress	all	
the	needed	informa6on	in	the	
last	encoder	state?		

• Idea:	use	all	the	hidden	states	
of	the	encoder	
• length	propor6onal	to	that	

of	the	sentence!	
• compute	a	weighted	average	

of	all	the	hidden	states
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Jointly	learning	to	align	and	
translate	for	Machine	Transla6on
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(Bahdanau	et	al.,	2015)

• WMT	2014	(EN→FR)
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Effec6ve	approaches	to	
ajen6on-based	NMT
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(Luong	et	al.,	2015)

• Global	and	local	ajen6on	
• Input-feeding	approach	
• Stacked	LSTM	instead	of	single-layer
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Mul6-source	NMT

48

(Zoph	and	Knight,	2016)

• Train	p(e|f,	g)	model	
directly	on	trilingual	data	

• Use	it	to	decode	e	given	
any	(f,	g)	pair	

• Take	local-ajen6on	NMT	
model	and	concatenate	
context	from	mul6ple	
sources
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Mul6-source	NMT

49

(Zoph	and	Knight,	2016)

• Mul6-source	training	improves	over	individual	
French	English	and	German	English	pairs		

• Best:	basic	concatena6on	with	ajen6on
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Mul6-source	NMT
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(Zoph	and	Knight,	2016)

• Mul6-source	training	improves	over	individual	
French	English	and	German	English	pairs		

• Best:	basic	concatena6on	with	ajen6on
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Mul6-target	NMT
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(Dong	et	al.,	2015)

• Mul6-task	learning	framework	for	mul6ple	target	
language	transla6on	

• Op6miza6on	for	one	to	many	model
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Mul6-target	NMT
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(Dong	et	al.,	2015)

• Improves	over	NMT	
and	moses	baselines	
over	WMT	2013	test		
• but	also	on	larger	
datasets		

• Faster	and	bejer	
convergence	in	
mul6ple	language	
transla6on



Nikolaos	Pappas 			/88

Mul6-way,	Mul6lingual	NMT
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(Firat	et	al.,	2016)

• Encoder-decoder	model	with	
mul6ple	encoders	and	decoders	
shared	across	pairs	

• share	knowledge	across	langs	
• universal	space	for	all	langs	
• good	for	low-resource	langs	

• Ajen6on	is	pair	specific,	hence	
expensive	O(L^2)		

• instead	share	ajen6on	across	
all	pairs!	

Figure:	n_th	encoder	and	m_th	decoder	at	6mestep	t	/	φ	makes	encoder	&	decoder	states	compa6ble	
with	the	ajen6on	mechanism	/	f_adp	makes	context	vector	compa6ble	with	the	decoder																									
→	all	these	transforma6ons	to	support	different	types	of	encoders/decoders	for	different	languages!	
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Mul6-way,	Mul6lingual	NMT

54

(Firat	et	al.,	2016)

• Consistent	improvements	for	low-
resource	languages	

• the	lower	the	training	data	the	
bigger	the	improvement		

• In	large-scale	translaHon	improves	
only	translaHon	to	English		
• hypothesis:	EN	appears	always	as	
source	or	target	language	for	all	
pairs	→	bejer	decoder	?
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Mul6-way,	Mul6lingual	NMT
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(Firat	et	al.,	2016)

• Consistent	improvements	for	low-
resource	languages	

• the	lower	the	training	data	the	
bigger	the	improvement		

• In	large-scale	translaHon	improves	
only	translaHon	to	English		
• hypothesis:	EN	appears	always	as	
source	or	target	language	for	all	
pairs	→	bejer	decoder	?



Nikolaos	Pappas 			/88

Google’s	Neural	Machine	
Transla6on	System	“Monster”

56

(Wu	et	al.,	2016)

• An	encoder,	a	decoder	and	an	ajen6on	network	
• Plus	8-layer	deep	with	residual	connec6ons	
• Plus	refinement	with	Reinforcement	Learning	
• Plus	sub-word	units…Plus….
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Google’s	Neural	Machine	
Transla6on	System	“Monster”
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(Wu	et	al.,	2016)

• EN->FR	training	takes	6	days	on	96GPUS	!!!!	and	3	more	days	for	refinement...
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Future	of	NMT	and	other	
possibili6es

58

• MulH-task	learning:	Training	
mul6ple	pairs	of	languages	
jointly	and	with	other	tasks		

→	Image	cap6oning,	
Speech	recogni6on	!

(Luong,	Cho,	Manning	tutorial,	2016)

• Larger	context:	Modeling	larger	sequences	than	sentences	as	
in	document	classifica6on	will	be	key		
• understanding	long-term	dependencies	
• leveraging	structural	informa6on	of	the	input	
• being	able	to	reason	over	it	to	solve	any	task	

	→		Effec6ve	Ajen6on	/	Memory?
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*	Figure	from	Colah’s	blog,	2015.
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Paragraph	vectors	for	
Document	Classifica6on

60

• Learning	vectors	of	paragraphs	inspired	by	word2vec	
• trained	without	supervision	on	a	large	corpus		
• preferably	similar	domain	as	the	target	

• Two	methods:	with	or	without	word	ordering		

(Le	et	al.,	2014)
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Paragraph	vectors	for	
Document	Classifica6on

61

• Learned	paragraph	vectors	+	logis6c	regression	
• Outperformed	previous	method	on	sentence-level	and	

document-level	sen6ment	classifica6on

(Le	et	al.,	2014)
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Convolu6onal	neural	network	
for	Document	Classifica6on

62

(Kim	et	al.,	2014)

• Used	mul6ple	filter	widths		
• Dropout	regulariza6on	(randomly	dropping	por6on	of	

hidden	units	during	back-propaga6on)
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Convolu6onal	neural	network	
for	Document	Classifica6on
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(Kim	et	al.,	2014)

• Not	all	baseline	methods	used	drop-out	though
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• Similar	to	Kim	et	al,	2014	however	different	
• K-max	pooling	instead	of	max	pooling	
• Two	layers	of	convolu6ons

64

(Denil	et	al.,	2014)

Modeling	and	Summarizing	Documents	
with	a	Convolu6onal	Network	
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Modeling	and	Summarizing	Documents	
with	a	Convolu6onal	Network	

65

(Denil	et	al.,	2014)
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Modeling	and	Summarizing	Documents	
with	a	Convolu6onal	Network	
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(Denil	et	al.,	2014)
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Modeling	and	Summarizing	Documents	
with	a	Convolu6onal	Network	
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(Denil	et	al.,	2014)
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Gated	recurrent	neural	network	
for	Document	Classifica6on

68

(Tang	et	al.,	2015)
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Gated	recurrent	neural	network	
for	Document	Classifica6on
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(Tang	et	al.,	2015)
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Standard	Pipeline	for	Document	
Classifica6on

70

• Feature	engineering:	BOW,	n-grams,	topic	models,	etc.	
• Feature	learning:	auto-encoders,	convolu6onal,	

recurrent,	recursive	NNs	

(Pappas	and	Popescu-Belis,	2014)
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Mul6ple-instance	Learning	for	
Document	Classifica6on

71

(Pappas	and	Popescu-Belis,	2014)
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How	to	combine	vectors?	
Structural	assump6ons

72

(Pappas	and	Popescu-Belis,	2014)
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Joint	learning	of	an	instance	
relevance	mechanism	and	a	classifier

73

(Pappas	and	Popescu-Belis,	2014)
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Joint	differen6able	objec6ve	for	
solving	with	SGD		

74

(Pappas	and	Popescu-Belis,	2014)
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Observa6ons	on	aspect	ra6ng	
predic6on

75

(Pappas	and	Popescu-Belis,	2014)

• The	proposed	mechanism	is	
superior	than	alterna6ves	
• all	text	regions	are	useful	

but	to	a	different	extent	
• Benefit	regardless	of	the	input	

features	used	
• Reaches	state-of-the-art	

without	using:	
• structured	output	learning	
• segmented	text
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Comparison	with	neural								
network	models

76

(Pappas	and	Popescu-Belis,	2016)

• This	mechanism	can	be	used	as	a	parametric	pooling	func6on	of	NNs	
• opera6ng	on	intermediate	hidden	states	

• Works	bejer	than	Dense,	GRU	neural	methods	+	average	pooling	
• Outperforms	RCNN	and	uses	far	less	parameters
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Hierarchical	ajen6on	networks	
for	Document	Classifica6on

77

(Yang	et	al.,	2016)

• Very	similar	hierarchical	
structure	as	Tang	et	al.,	2015	
except	average	pooling	
• ajen6on	mechanism	at	the	

word	and	document	levels	
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Hierarchical	ajen6on	networks	
for	Document	Classifica6on
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(Yang	et	al.,	2016)
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Reflec6ons	on	Mul6lingual	
Document	Classifica6on
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• What	are	the	present	limitaHons?	
• Current	evalua6on	datasets	contain	small	number	of	

target	classes	and	examples	
• RCV1/RCV2	→	6,000	documents,	2	langs,	4	labels	
• TED	corpus	→	12,078	documents,	12	langs,	15	labels	

• Requires	the	labels	to	be	common	across	languages	
• Data	are	not	enough	to	train	SOA	neural	architectures	

• ObservaHon:	currently	there	are	several	domains	which	
support	mul6ple	languages	but	only	monolingual	
classifica6on	is	possible
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New	dataset:	Deutsche	Welle	
corpus	(600k	docs,	8	langs)
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Conclusion

81

• Mul6lingual	word	embeddings	are	useful	for	tasks	where	
there	is	lack	of	parallel	data	

• Word	sequence	modeling	is	advancing	quickly	with	the	
establishment	of	neural	methods	

• Machine	Transla6on	
• Document	Classifica6on		

• MulHlingual	Neural	Machine	TranslaHon	
• is	useful	for	low-resourced	languages	
• transfers	knowledge	in	large-scale	se}ng	

• MulHlingual	Document	ClassificaHon		
• several	large	resources	available	but	with	disjoint	labels	
• could	possibly	benefit	from	NMT	lessons
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