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Motivation

● Can we use lexicons to better 
generalize to rare words? 

● How to decouple training and testing 
vocabularies?

● What output form is most suitable for 
domain adaptation?

                  



             

                  

Previous work on rare words



Subword tokenization

● Character-level models  (Cherry et al., 2018; Al-Rfou et al., 2019)

■ Costly prefix encoders and training

● Data-driven vocabulary selection (Sennrich et al., 2016; Radford et al., 2018)

■ Linguistically simplistic 

■ Rely on lookup tables

●

Linguistically naive 



● Local or unbounded neural cache (Graves et al., 2017a,b)

■ Low-cost adaptation to rare/new words

Linguistically naive 

Interpolation with a neural cache

Local neural cacheNeural model     
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Our method — GroC 
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Adapting to any vocabulary

● Then we estimate the 
bias for each word u

● We first represent the 
vocabulary with GroC



GroC summary 

● Creates a compact representation of any vocabulary

● Grounds the language model predictions to prior knowledge

● Enables the decoupling of training and test vocabularies



             

                  

Experiments



Conventional language modeling

How GroC compares to previous output embedding methods?
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Conventional language modeling

Tied lookup table
(Press and Wolf., 2017)

Deep residual network
(Pappas et al., 2019)

Adaptive embeddings
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Conventional language modeling

 Where does the improvement come from?
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Break down by frequency
Median NLL difference

Training occurrences

Lower is better

Better on low 
frequency words



Cross-domain modeling: Zero resource

 Does GroC generalize on zero resource adaptation settings?



Cross-domain modeling: Zero resource
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Cross-domain modeling: Low resource

Does GroC help on low resource adaptation settings?



Cross-domain modeling: Low resource
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Cross-domain modeling: Low resource  Lower perplexity
in most cases

Perplexity 



Conclusion

Grounded compositional outputs for language models

● Outperform previous methods on conventional settings

● Achieve low perplexity on rare words

● Generalize well to previously unseen domains 



Thank you 

             https://github.com/Noahs-ARK/groc

         


