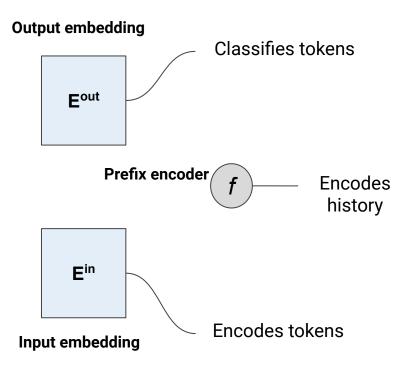
Grounded Compositional Outputs for Adaptive Language Modeling

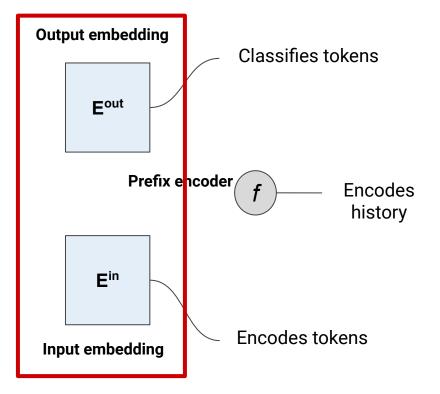
Nikolaos Pappas, Phoebe Mulcaire, Noah A. Smith

EMNLP 2020

Neural language models

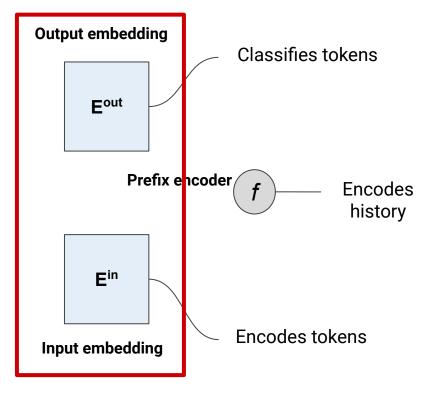


Neural language models: Limitations



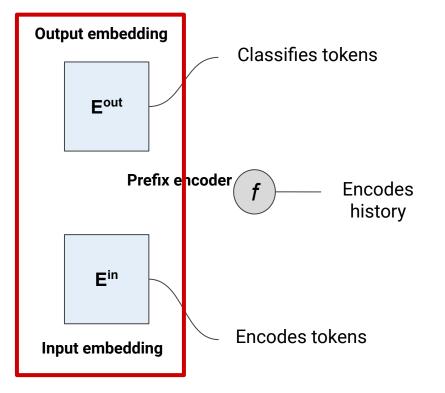
 Parameterization depends on the vocabulary

Neural language models: Limitations



- Parameterization depends on the vocabulary
- Handle rare or new words poorly

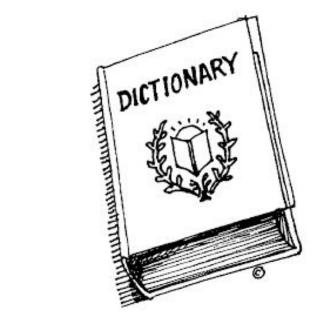
Neural language models: Limitations



- Parameterization depends on the vocabulary
- Handle rare or new words
 poorly
- Cannot be gracefully modified once trained

Motivation

- Can we use lexicons to better generalize to rare words?
- How to decouple training and testing vocabularies?
- What output form is most suitable for domain adaptation?



Previous work on rare words

Subword tokenization

• Character-level models (Cherry et al., 2018; Al-Rfou et al., 2019)

K Costly prefix encoders and training

- Data-driven vocabulary selection (Sennrich et al., 2016; Radford et al., 2018)
 - **K** Linguistically simplistic
 - Rely on lookup tables

Interpolation with a neural cache

• Local or unbounded neural cache (Graves et al., 2017a,b)

Low-cost adaptation to rare/new words

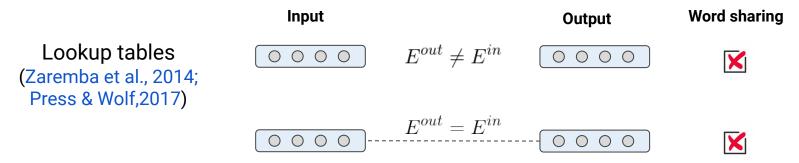
$$p(x_t|h_{1:t}, x_{1:t}) = (1 - \lambda)p_{vocab}(x_t|h_t) + \lambda p_{cache}(x_t|h_{1:t}, x_{1:t})$$

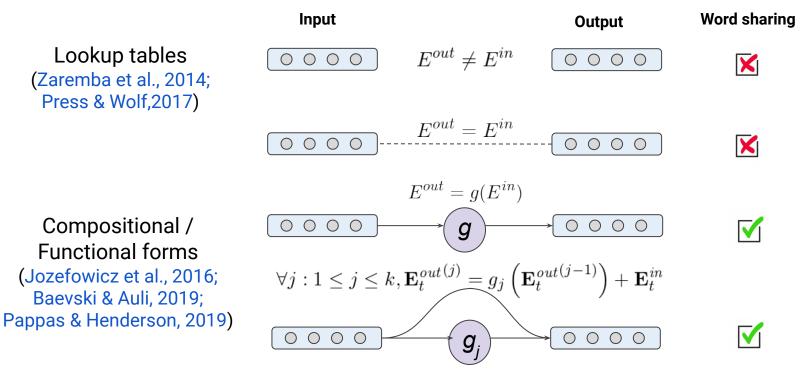
$$(Neural model)$$

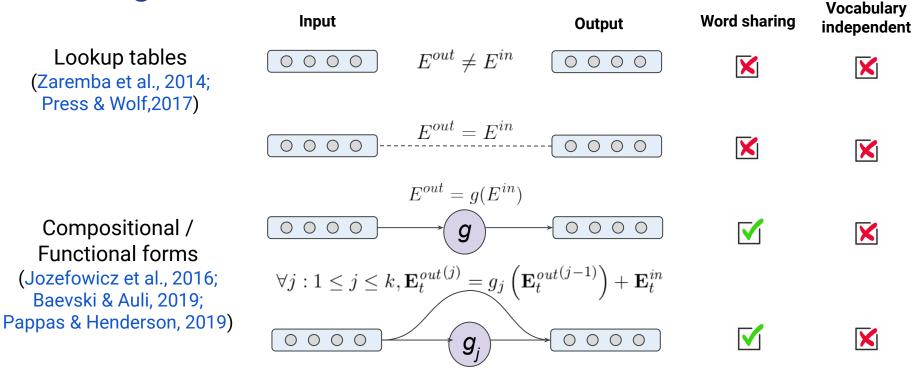
$$(Local neural cache)$$

$$(x_t|h_t) + \lambda p_{cache}(x_t|h_{1:t}, x_{1:t})$$

$$(x_t) + \lambda p_{cache}(x_t|h_{1:t}, x_{1:t})$$

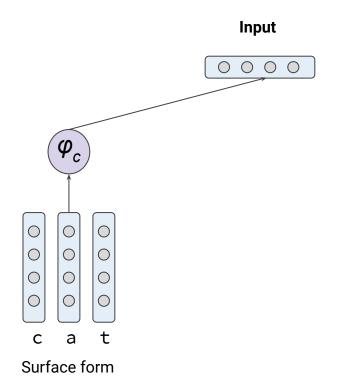


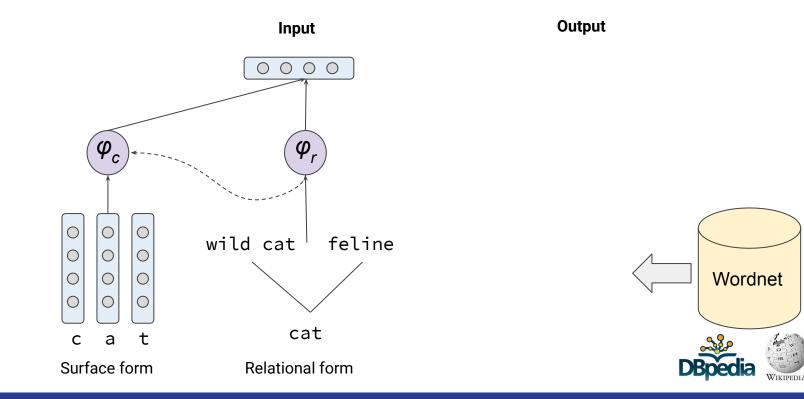


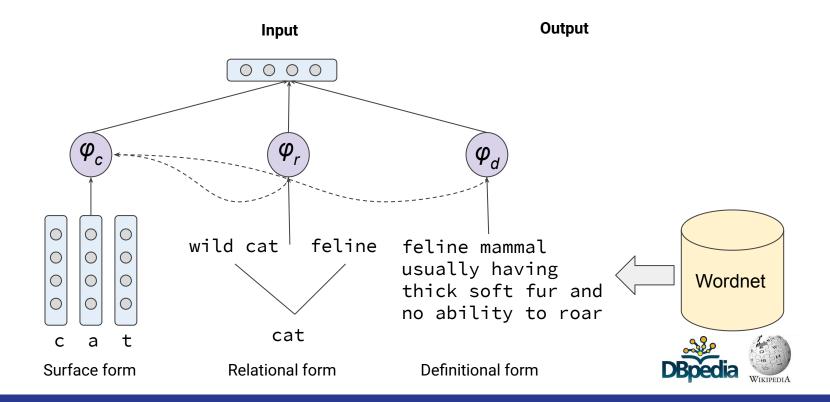


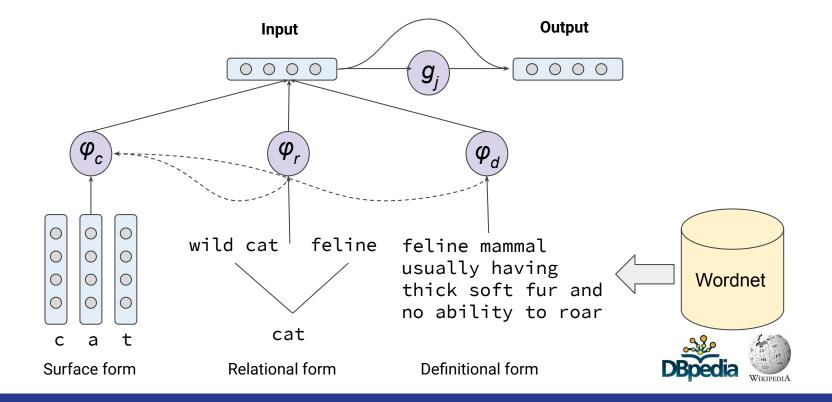
Our method – GroC

Output









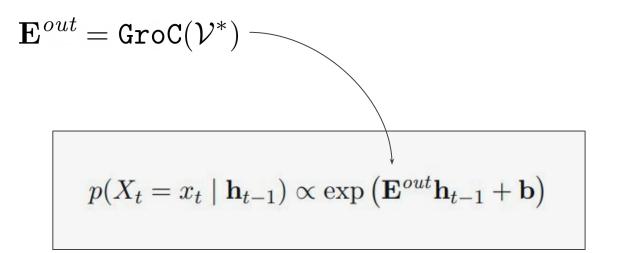


Adapting to any vocabulary

$$p(X_t = x_t \mid \mathbf{h}_{t-1}) \propto \exp\left(\mathbf{E}^{out}\mathbf{h}_{t-1} + \mathbf{b}\right)$$

Adapting to any vocabulary

• We first represent the vocabulary with GroC



Adapting to any vocabulary

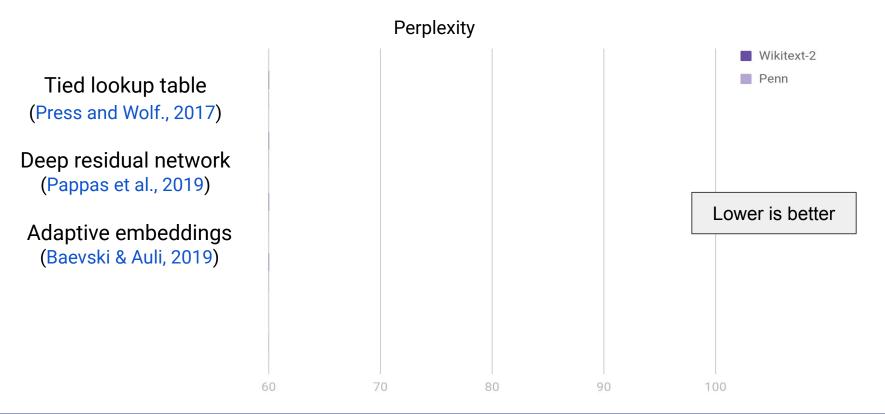
We first represent the Then we estimate the vocabulary with GroC bias for each word u $b_v = \sigma \left(\mathbf{w} \cdot \mathbf{e}_v^{out} + a \right)$ $\mathbf{E}^{out} = \mathtt{GroC}(\mathcal{V}^*)$ $p(X_t = x_t \mid \mathbf{h}_{t-1}) \propto \exp\left(\mathbf{E}^{out}\mathbf{h}_{t-1} + \mathbf{b}\right)$

GroC summary

- Creates a compact representation of any vocabulary
- Grounds the language model predictions to prior knowledge
- Enables the decoupling of training and test vocabularies

Experiments

How GroC compares to previous output embedding methods?



Perplexity Wikitext-2 Penn Lower is better 60 80 90 100

Tied lookup table (Press and Wolf., 2017)

Deep residual network (Pappas et al., 2019)

Adaptive embeddings (Baevski & Auli, 2019)

Perplexity Wikitext-2 Penn Lower is better 60 80 90 100

Tied lookup table (Press and Wolf., 2017)

Deep residual network (Pappas et al., 2019)

Adaptive embeddings (Baevski & Auli, 2019)

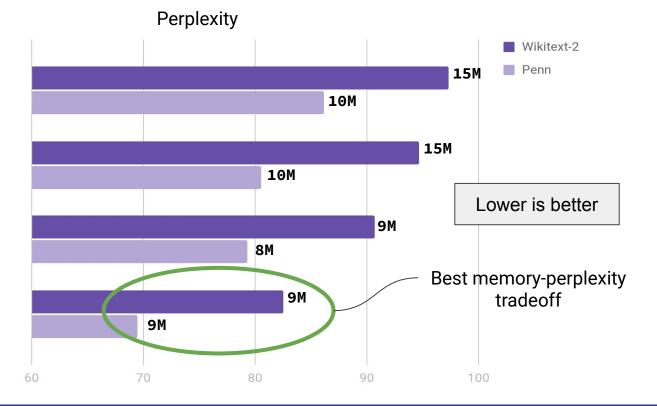
GroC (Ours)

Tied lookup table (Press and Wolf., 2017)

Deep residual network (Pappas et al., 2019)

Adaptive embeddings (Baevski & Auli, 2019)

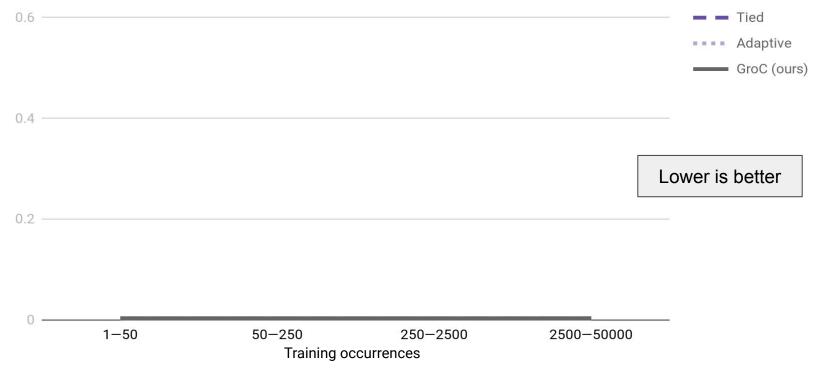
GroC (Ours)



Where does the improvement come from?

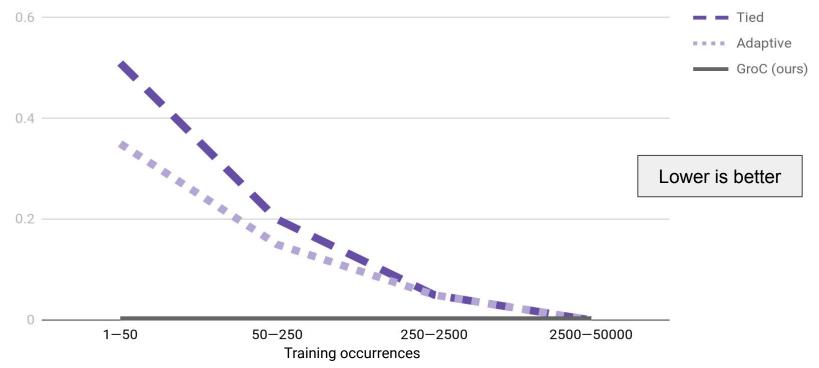
Break down by frequency

Median NLL difference



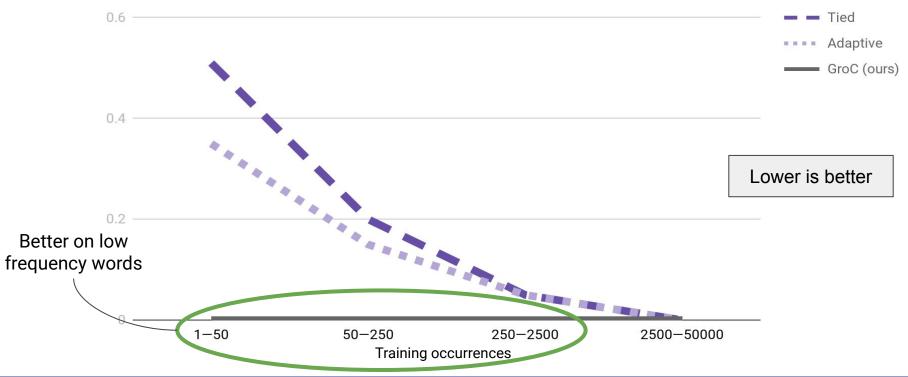
Break down by frequency

Median NLL difference



Break down by frequency

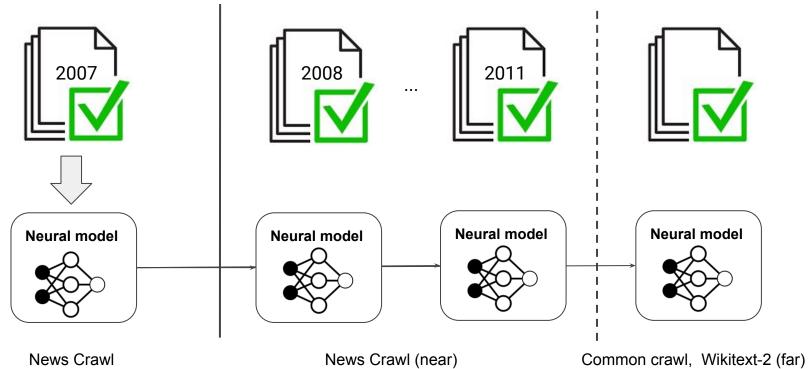
Median NLL difference



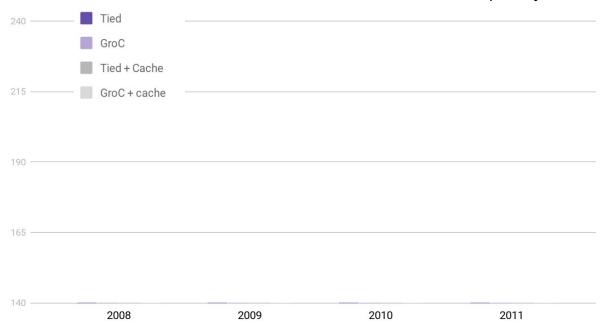
Does GroC generalize on zero resource adaptation settings?

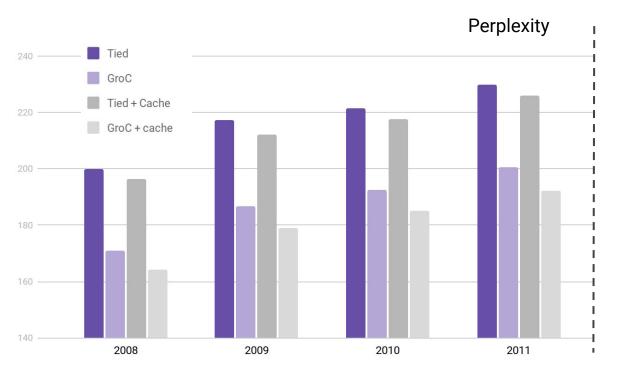
Training

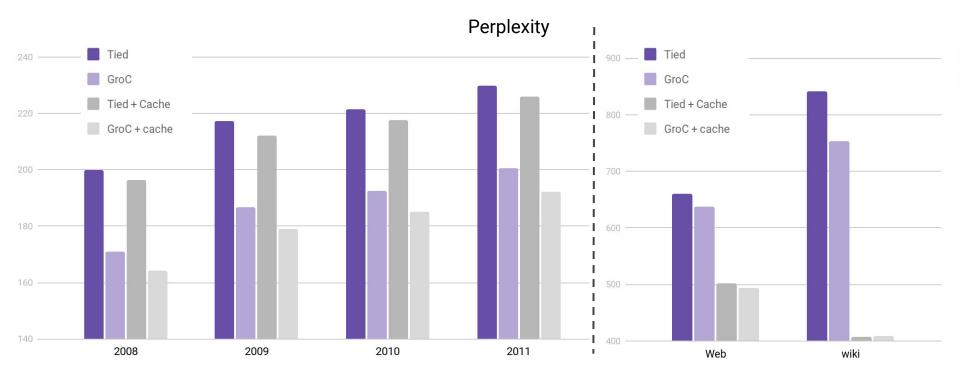
Finetuning & Testing



Perplexity



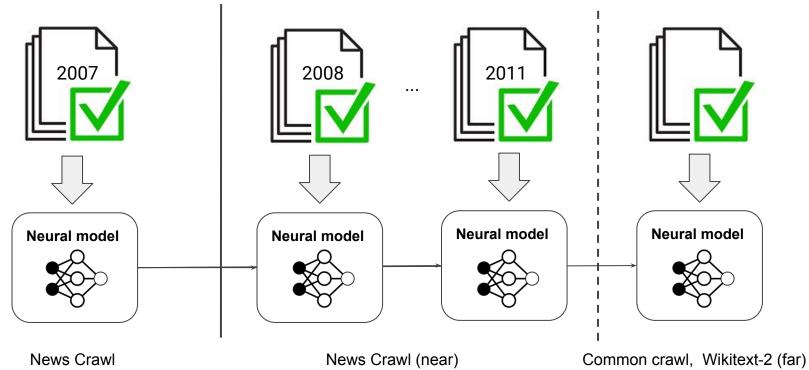


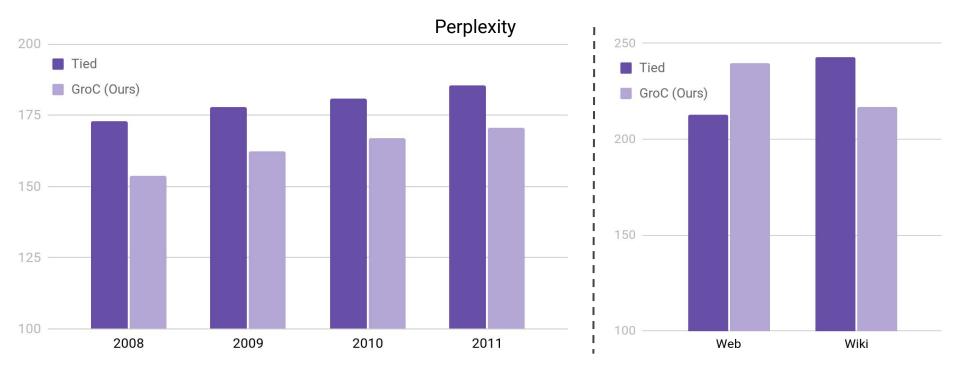


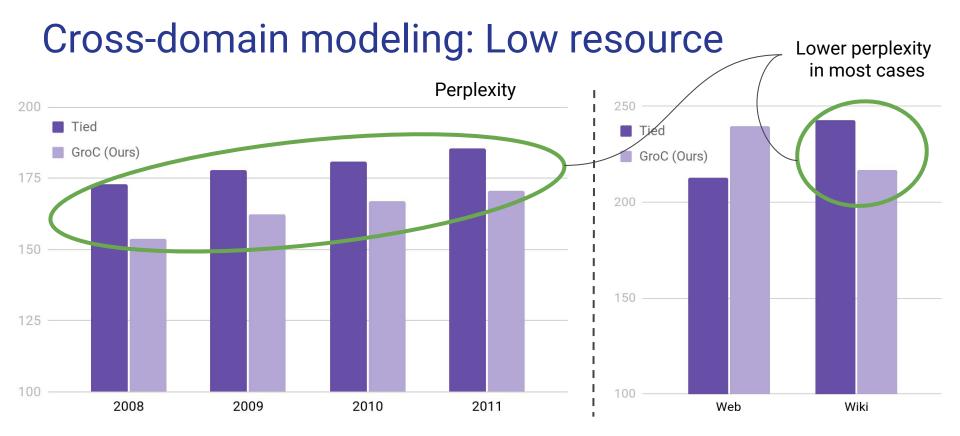
Does GroC help on low resource adaptation settings?

Training

Finetuning & Testing







Conclusion

Grounded compositional outputs for language models

- Outperform previous methods on conventional settings
- Achieve low perplexity on rare words
- Generalize well to previously unseen domains

Thank you

https://github.com/Noahs-ARK/groc