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The Problem with Conditional Text Generation

discrete space text lives in a messy, discrete space

conditional text generation
requires mapping from discrete
input to discrete output

learning a complex, task-specific
function, which is di�cult to train
in discrete space

obtain a continuous space by
training an autoencoder
reduce task-specific learning to
the continuous space
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Framework Overview

Our framework (Emb2Emb) consists of three stages:
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Framework Overview

Pretraining:
Train a model of the form A(x) = Dec(Enc(x)) on corpus of sentences
Assume a fixed-size continuous embedding zx := Enc(x) ∈ Rd

Enc and Dec can be any function trained with any objective so long as A(x) ≈ x
training corpus can be any unlabeled corpus⇒ large-scale pretraining?
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Assume a fixed-size continuous embedding zx := Enc(x) ∈ Rd

Enc and Dec can be any function trained with any objective so long as A(x) ≈ x
training corpus can be any unlabeled corpus⇒ large-scale pretraining?

Plug and Play
Our framework is plug and play because any autoencoder can be used with it.
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Framework Overview

Task Training:
Supervised case: Ltask(ẑy, zy) = d(ẑy, zy) where d is a distance function (cosine
distance loss in our experiments).

Training objective: L = Ltask + λadv·
?
Ladv
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Framework Overview

Inference:
compose inference model as Enc ◦Φ ◦ Dec

but: Dec not involved in training. Can it handle outputs of Φ?
⇒ yes, if using Ladv.
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What can happen when learning in the embedding space?

(0,0)

A prediction may end up o� the
manifold, and by definition, the
decoder cannot handle
o�-manifold data well, but ...
... but the predicted embedding
may still have the same angle as
the true output embedding...
resulting in zero cosine distance
loss despite being o� the manifold.
Similar problems arise for L2
distance - how do we keep the
embeddings on the manifold?
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Adversarial Loss Term

train a discriminator disc to distinguish between embeddings produced by the
encoder and embeddings resulting from the mapping:

max
disc

N∑
i=1

log(disc(zỹi
)) + log(1− disc(Φ(zxi))

using the adversarial learning framework, mapping acts as the adversary and tries
to fool the discriminator:

Ladv(Φ(zxi);θ) = − log(disc(Φ(zxi); θ))

at convergence, the mapping should only produce embeddings that are on the
manifold
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Supervised Style Transfer Experiments

WikiLarge dataset: transform “normal“ English to “simple“ English
parallel sentences (input and output) are available

Model BLEU (relative imp.) SARI (relative imp.)

Emb2Emb (no Ladv) 15.7 (-) 21.1 (-)
Emb2Emb 34.7 (+121%) 25.4 (+20.4%)

The adversarial loss term Ladv is crucial for embedding-to-embedding training!
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Supervised Style Transfer Experiments

we conducted controlled experiments of models with a fixed-size bottleneck
best Seq2Seq model: best performing variant among fixed-size bottleneck models
that are trained end-to-end via token-level cross-entropy loss (like Seq2Seq)

Model BLEU (relative imp.) SARI (relative imp.) Speedup

Best Seq2Seq model 23.3 (±0%) 22.4 (±0%) -
Emb2Emb 34.7 (+48.9%) 25.4 (+13.4%) 2.2×

Training models with a fixed-size bottleneck may be easier, faster, and more e�ective
when training embedding-to-embedding!
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Unsupervised Task Training

Fixed-size bottleneck autoencoders are commonly used for unsupervised style
transfer

The goal is to change the style of a text, but retain the content: e.g., in machine
translation, sentence simplification, sentiment transfer

training objective: L = Ltask + λadv · Ladv

Ltask(ẑy, zx) = λstyLsty(ẑy) + (1− λsty)Lcont(ẑy, zx)

we set Lcont to cosine distance, and Lsty to a style classifier’s negative
log-likelihood of the target class
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Unsupervised Style Transfer Experiments

Yelp sentiment transfer dataset: transform reviews with negative sentiment into
reviews with positive sentiment (accuracy), but retain content (self-BLEU)
if we have labels for only 10% of the data, how much better is a plug and play
model?

E�ect of pretraining
By leveraging autoencoder pretraining
on unlabeled data, our plug and play
method o�ers a distinct advantage on
unsupervised style transfer!
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Conclusion

In this talk...

we propose to learn in the embedding space of a pretrained autoencoder, training
embedding-to-embedding (Emb2Emb).
we discuss why it’s important to keep the predicted embedding on the manifold of
the autoencoder, and how to achieve that.
we demonstrate that a plug and play method like ours has a distinct advantage on
unsupervised style transfer.

Additionally, our paper...
presents an architecture for the mapping Φ that is better than just MLPs.
demonstrates how to further improve the performance on unsupervised style
transfer at inference time.
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THANK YOU
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