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FRAMEWORK OVERVIEW

Our framework (Emb2Emb) consists of three stages:

PRETRAINING TASK TRAINING INFERENCE
Y enc Zy === Liask

S Za Zy .
o | @@
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FRAMEWORK OVERVIEW

PRETRAINING
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Pretraining:
@ Train a model of the form .4(x) = Dec(Enc(x)) on corpus of sentences
@ Assume a fixed-size continuous embedding zy := Enc(x) € RY
@ Enc and Dec can be any function trained with any objective so long as A(x) =~ x
@ training corpus can be any unlabeled corpus = large-scale pretraining?
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FRAMEWORK OVERVIEW

PRETRAINING
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Pretraining:
@ Train a model of the form A(x) = Dec(Enc(x)) on corpus of sentences
@ Assume a fixed-size continuous embedding zy := Enc(x) € RY
@ Enc and Dec can be any function trained with any objective so long as A(x) = x
@ training corpus can be any unlabeled corpus = large-scale pretraining?

Plug and Play
Our framework is plug and play because any autoencoder can be used with it.
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FRAMEWORK OVERVIEW

TASK TRAINING

Task Training:

@ Supervised case: Lysk(Zy,2y) = d(Zy,zy) where d is a distance function (cosine
distance loss in our experiments).
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TASK TRAINING

Task Training:

@ Supervised case: Lysk(Zy,2y) = d(Zy,zy) where d is a distance function (cosine
distance loss in our experiments).
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@ Training objective: £ = Liqsk + Aadv-
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FRAMEWORK OVERVIEW

INFERENCE

Zo _ 7y

T enc 0]

Inference:
@ compose inference model as Enc o® o Dec
@ but: Dec not involved in training. Can it handle outputs of ®?
@ = vyes, if using L,qy.-
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@ A prediction may end up off the
manifold, and by definition, the
decoder cannot handle
off-manifold data well, but ...

@ ... but the predicted embedding
may still have the same angle as
the true output embedding...

@ resulting in zero cosine distance
loss despite being off the manifold.

@ Similar problems arise for L2
distance - how do we keep the
embeddings on the manifold?
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ADVERSARIAL LOSS TERM

@ train a discriminator disc to distinguish between embeddings produced by the
encoder and embeddings resulting from the mapping:

disc 4

N
max » _ log(disc(zy,)) + log(1 — disc(P(zx,))

@ using the adversarial learning framework, mapping acts as the adversary and tries
to fool the discriminator:

Laay(®(2x); 0) = — log(disc(P(zy,); 0))

@ at convergence, the mapping should only produce embeddings that are on the
manifold
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SUPERVISED STYLE TRANSFER EXPERIMENTS

@ WikiLarge dataset: transform “normal” English to “simple” English
@ parallel sentences (input and output) are available

Model | BLEU (relative imp.) | SARI (relative imp.)
Emb2Emb (no Lgg,) | 15.7 (-) 211 (-)
Emb2Emb 34.7 (+121%) 25.4 (+20.4%)

The adversarial loss term Lq, is crucial for embedding-to-embedding training!
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SUPERVISED STYLE TRANSFER EXPERIMENTS

@ we conducted controlled experiments of models with a fixed-size bottleneck

@ best Seq2Seq model: best performing variant among fixed-size bottleneck models
that are trained end-to-end via token-level cross-entropy loss (like Seq2Seq)

Model \ BLEU (relative imp.) \ SARI (relative imp.) \ Speedup
Best Seq2Seq model 23.3 (+0%) 22.4 (£0%) -
Emb2Emb 34.7 (+48.9%) 25.4 (+13.4%) 2.2X

Training models with a fixed-size bottleneck may be easier, faster, and more effective
when training embedding-to-embedding! J
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UNSUPERVISED TASK TRAINING

@ Fixed-size bottleneck autoencoders are commonly used for unsupervised style
transfer
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translation, sentence simplification, sentiment transfer
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UNSUPERVISED TASK TRAINING

@ Fixed-size bottleneck autoencoders are commonly used for unsupervised style
transfer

@ The goal is to change the style of a text, but retain the content: e.g., in machine
translation, sentence simplification, sentiment transfer

TASK TRAINING

@ training objective: £ = Ligsk + Magv * Ladv

° »Ctask(sz, Zy) = )\styﬁsty(sz) +(1— /\sty)»ccont(sza Zy)

@ we set Leon: to cosine distance, and Lsy to a style classifier’s negative
log-likelihood of the target class
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UNSUPERVISED STYLE TRANSFER EXPERIMENTS

@ Yelp sentiment transfer dataset: transform reviews with negative sentiment into
reviews with positive sentiment (accuracy), but retain content (self-BLEU)

o if we have labels for only 10% of the data, how much better is a plug and play

model?
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Effect of pretraining

By leveraging autoencoder pretraining
on unlabeled data, our plug and play
method offers a distinct advantage on
unsupervised style transfer!

florian.mai@idiap.ch




CONCLUSION

In this talk...

florian.mai@idiap.ch



CONCLUSION

In this talk...

@ we propose to learn in the embedding space of a pretrained autoencoder, training
embedding-to-embedding (Emb2Emb).

florian.mai@idiap.ch



CONCLUSION

In this talk...

@ we propose to learn in the embedding space of a pretrained autoencoder, training
embedding-to-embedding (Emb2Emb).

@ we discuss why it's important to keep the predicted embedding on the manifold of
the autoencoder, and how to achieve that.

florian.mai@idiap.ch



N
CONCLUSION

In this talk...

@ we propose to learn in the embedding space of a pretrained autoencoder, training
embedding-to-embedding (Emb2Emb).

@ we discuss why it's important to keep the predicted embedding on the manifold of
the autoencoder, and how to achieve that.

@ we demonstrate that a plug and play method like ours has a distinct advantage on
unsupervised style transfer.

florian.mai@idiap.ch



N
CONCLUSION

In this talk...

@ we propose to learn in the embedding space of a pretrained autoencoder, training
embedding-to-embedding (Emb2Emb).

@ we discuss why it's important to keep the predicted embedding on the manifold of
the autoencoder, and how to achieve that.

@ we demonstrate that a plug and play method like ours has a distinct advantage on
unsupervised style transfer.

Additionally, our paper...
@ presents an architecture for the mapping ¢ that is better than just MLPs.

florian.mai@idiap.ch



N
CONCLUSION

In this talk...

@ we propose to learn in the embedding space of a pretrained autoencoder, training
embedding-to-embedding (Emb2Emb).

@ we discuss why it's important to keep the predicted embedding on the manifold of
the autoencoder, and how to achieve that.

@ we demonstrate that a plug and play method like ours has a distinct advantage on
unsupervised style transfer.

Additionally, our paper...
@ presents an architecture for the mapping ¢ that is better than just MLPs.

@ demonstrates how to further improve the performance on unsupervised style
transfer at inference time.
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