

MOTIVATION

Many tasks such as *zero-shot classification* and *structured prediction* benefit from learning the output space structure. Typical output layers for *neural language generation*:

- Indirectly capture the similarity structure of the output space
- Have limited expressivity and are prone to overfitting
- Increasing their power comes with a high overhead

PROBLEM: NEURAL LANGUAGE GENERATION

The probability distribution at time t conditioned on $\mathbf{y_1^{t-1}}$ encoded in a vector $\mathbf{h}_{\mathbf{t}} \in \mathbb{R}^{d}$ is modeled by linear unit $\mathbf{W} \in \mathbb{R}^{d \times |\mathcal{V}|}, \mathbf{b} \in \mathbb{R}^{|\mathcal{V}|}$: $p(\mathbf{y_t}|\mathbf{y_1^{t-1}}) \propto \exp(\mathbf{W}^T \mathbf{h_t} + \mathbf{b})$

- Parameterisation depends on the vocabulary size $|\mathcal{V}|$
- Power depends on the classifier rank *d* aka "softmax bottleneck"

Previous Work

Weight tying [PW17] matrix W with the word embedding $\mathbf{E} \in$ $\mathbb{R}^{|\mathcal{V}| \times d}$ helps but still lacks parameter sharing across outputs:

$\mathbf{E}\mathbf{h_t} + \mathbf{b}$

Bilinear mapping [G18] explicitly shares parameters across outputs through matrix $\mathbf{W}_{\mathbf{l}}$:

$EW_lh_t + b$

Dual nonlinear mapping [P18] shares parameters across outputs and contexts through a nonlinear joint space:

$g_{out}(\mathbf{E})g_{in}(\mathbf{h_t}) + \mathbf{b}$

LIMITATIONS:

 $|\Theta_{tied}| < |\Theta_{bilinear}| \le |\Theta_{dual}| \le |\Theta_{base}|$

- Shallow output space modeling: power depends on the rank d
- Tendency to overfit: increased power leads to undesired effects

DEEP RESIDUAL OUTPUT LAYERS FOR NEURAL LANGUAGE GENERATION

Nikolaos Pappas, James Henderson

Idiap Research Institute, Martigny, Switzerland

PROPOSED ARCHITECTURE OVERVIEW

We propose a deep output layer architecture based on the general form and the basic principles of previous work, the power of which no longer depends on the classifier rank d:

 $p(\mathbf{y_t}|\mathbf{y_1^{t-1}}) \propto \exp(\mathbf{E}^{(k)}\mathbf{h_t} + \mathbf{b})$

LABEL ENCODER NETWORK

Shares parameters across outputs through a deep residual output mapping with depth k while keeping the rank d fixed:

 $\mathbf{E}^{(\mathbf{k})} = f_{out}^{(k)}(\mathbf{E}^{(\mathbf{k}-1)}) = \sigma(\mathbf{E}^{(\mathbf{i}-1)}\mathbf{U}^{(\mathbf{i})} + \mathbf{b}_{\mathbf{u}}^{(\mathbf{i})})$

PROPERTIES

Preserving information with residual connections to the word embedding and, optionally, to the outputs of previous layers:

 $E^{(k)} = f^{(k)}_{out}(E^{(k-1)}) + E^{(k-1)} + E$

Controlling power by increasing the projection depth k:

 $|\Theta_{drill}| \approx k \times (d \times d)$

Avoiding overfitting with standard or variational dropout in between each of the k projection layers:

 $f'^{(i)}_{out}(\mathbf{E}^{(i-1)}) = \delta(f^{(i)}_{out}(\mathbf{E}^{(i-1)}))$

REFERENCES

[PW17] Ofir Press and Lior Wolf. Using the Output Embedding to Improve Language Models. EACL. Valencia, Spain, 2017 [G18] Kristina Gulordava et al. Improving tied architectures for language modelling. *EMNLP*, Brussels, Belgium, 2018. [P18] Nikolaos Pappas et al. Learning Joint Input-Output Embeddings for Neural Machine Translation. WMT, Brussels, Belgium, 2018. [M18] Stephen Merity et al. Regularizing and Optimizing LSTM Language Models. *ICLR*, Vancouver, Canada, 2018 [Y18] Zhilin Yang et al. Breaking the Softmax Bottleneck: A High-Rank RNN Language Model. *ICLR*, Vancouver, Canada, 2018 [V17] Ashish Vaswani et al.. Attention is All you Need. Advances in Neural Information Processing Systems, 2017.

$$\odot f_{out}^{(i)}(\mathbf{E^{(i-1)}})$$

We evaluate on two language generation tasks using state-of-the-art architectures, namely AWD-LSTM [M18] and Transformer [V18].

LANGUAGE MODELING

Model

AWD-LSTM [M18] AWD-LSTM-DRILL

AWD-LSTM-MoS [Y18]

MACHINE TRANSLATION

Model

Transformer (bas Transformer-DR Transformer (big

ABLATION ANALYSIS

Output Layer	#Param	Pe
Full softmax	43.8M	66
Weight tying [PW17]	24.2M	57
Bilinear map. [G18]	24.3M	58
Dual map. [P18]	$24.5\mathrm{M}$	56
DRILL 1-layer	24.3M	56
DRILL 2-layers	$24.5\mathrm{M}$	56
DRILL 3-layers	$24.7\mathrm{M}$	55
DRILL 4-layers	24.8M	55

Deeper output mappings for neural language generation:

- low-resource ones

Future work: Explore other generation tasks, learn elaborate/ multi-level descriptions, investigate transferability

EVALUATION

PennTreebank		WikiText-2	
ppl	sec/ep	\mathbf{ppl}	sec/ep
57.3	$47 (1.0 \times)$		$89(1.0 \times)$
55.7	$53 (1.1 \times)$	61.9	$106 (1.2 \times)$
54.44	$139 (3.0 \times)$	61.45	862 (9.7×)

	En \rightarrow De (32K)		
	bleu	\min/ep	
ase) [V17]	27.3	$111 (1.0 \times)$	
RILL (base)	28.1	$189 (1.7 \times)$	
g) [V17]	28.4	$779(7.0\times)$	

CONCLUSION

• Improve recurrent or self-attentional architectures without increasing their rank which often leads to high overhead • Lead to better transfer across the output labels, especially the