DEEP RESIDUAL OUTPUT LAYERS FOR NEURAL LANGUAGE GENERATION

Bl N

N (| P=]

RESEARCH INSTITUTE .

Nikolaos Pappas, James Henderson

Idiap Research Institute, Martigny, Switzerland

https://github.com/idiap/drill

MOTIVATION

Many tasks such as zero-shot classification and structured pre-
diction benefit from learning the output space structure. Typical
output layers for neural language generation:

. Indirectly capture the similarity structure of the output space
- Have limited expressivity and are prone to overfitting
. Increasing their power comes with a high overhead

PROBLEM: NEURAL LANGUAGE
(FJENERATION

The probability distribution at time ¢ conditioned on y3$~! encoded
in a vector hy € IRY is modeled by linear unit W € RVl b € RIVI:

p(ytlyy ') o< exp(W" h¢ + b)

» Parameterisation depends on the vocabulary size |V

« Power depends on the classifier rank d aka “softmax bottleneck”

PREVIOUS WORK

Weight tying [PW17| matrix W with the word embedding E &
RVI*d helps but still lacks parameter sharing across outputs:

Eh; + b

Bilinear mapping |G18| explicitly shares parameters across outputs

through matrix Wi:
EWih; +b

Dual nonlinear mapping |P18| shares parameters across outputs
and contexts through a nonlinear joint space:

Gout(E)gin(hg) + b

LIMITATIONS:

|@t7)ed| < |@bil7jnear‘ S |@dual‘ S |@ba56‘

« Shallow output space modeling: power depends on the rank d

» Tendency to overfit: increased power leads to undesired effects

PROPOSED ARCHITECTURE OVERVIEW

Output text

Wy, W, ooey Wy, >@ s EK
: . > y
Input text \ T

v —— (o) >ht/ b

We propose a deep output layer architecture based on the general
form and the basic principles of previous work, the power of which
no longer depends on the classifier rank d:

p(ye|yi™") o exp(E"hy + b)

LABEL ENCODER NETWORK

E FO——s... — EMH‘% E(k'”ﬁ E®

Shares parameters across outputs through a deep residual output
mapping with depth & while keeping the rank d fixed:

EX — fHEE1) = o@Dy 4 pl)

out

PROPERTIES

Preserving information with residual connections to the word
embedding and, optionally, to the outputs of previous layers:

k) — f(@(E(k—l)) + gk LR

out

Controlling power by increasing the projection depth &:
‘@dm'll‘ ~ k X (d X d)

Avoiding overfitting with standard or variational dropout in be-
tween each of the k£ projection layers:

FBD) = G700 © F B0

out out

REFERENCES

[PW17] Ofir Press and Lior Wolf. Using the Output Embedding to Improve Language Models. EACL. Valencia, Spain, 2017
|G18] Kristina Gulordava et al. Improving tied architectures for language modelling. EMNLP, Brussels, Belgium, 2018.

[P18] Nikolaos Pappas et al. Learning Joint Input-Output Embeddings for Neural Machine Translation. WMT, Brussels, Belgium, 2018.
[M18] Stephen Merity et al. Regularizing and Optimizing LSTM Language Models. ICLR, Vancouver, Canada, 2018

[Y18] Zhilin Yang et al. Breaking the Softmax Bottleneck: A High-Rank RNN Language Model. ICLR, Vancouver, Canada, 2018

V17

Ashish Vaswani et al.. Attention is All you Need. Advances in Neural Information Processing Systems, 2017.

EVALUATION

We evaluate on two language generation tasks using state-of-the-art
architectures, namely AWD-LSTM [M18] and Transformer [V18].

[LANGUAGE MODELING

PennTreebank | WikiText-2

Model ppl sec/ep @ ppl sec/ep
AWD-LSTM [M18] 573 47 (1.0x) | 65.8 89 (1.0x)
AWD-LSTM-DRILL 557 53 (L.1x) | 619 106 (1.2x)

AWD-LSTM-MoS [Y18] 54.44 139 (3.0x) |61.45 862 (9.7x)

MACHINE TRANSLATION

En—De (32K)
Model bleu min/ep
Transformer (base) [V17] 27.3 111 (1.0x)
Transformer-DRILL (base) 28.1 189 (1.7x)

Transformer (big) V17| 28.4 779 (7.0x)

ABLATION ANALYSIS

Output Layer #Param Penn ;\3 1;(5) “ - V\{e.ighttying [PW17]

Full softmax 43.8M 66.8 ;v 12.5- “\ + gt';er?;nrﬂz:ﬁnlfg. [PH18]

Weight tying [PW17] 24.2M 57.3 Fls 1007 =\ —— DRILL (Ours)

Bilinear map. |G18] | 24.3M 58.5 fg ;(5)

Dual map. [P18] 24.5M 564 3T s

DRILL 1-layer 24.3M 56.2 E@ 0.0

DRILL 2-layers 24.5M 56.0 e e e

DRILL 3-layers ~ 24.7M 55.9 15 R 8 7T % 7 8

DRILL 4-layers 24.8M 55.7 -8 g § &8 % & =
W

ord frequency bins

Deeper output mappings for neural language generation:

» Improve recurrent or self-attentional architectures without
increasing their rank which often leads to high overhead

» Lead to better transfer across the output labels, especially the
low-resource ones

Future work: Explore other generation tasks, learn elaborate/
multi-level descriptions, investigate transterability

https://github.com/idiap/drill

