DEEP RESIDUAL OUTPUT LAYERS FOR NEURAL LANGUAGE GENERATION
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MOTIVATION

Many tasks such as zero-shot classification and structured pre-
diction benefit from learning the output space structure. Typical
output layers for neural language generation:

. Indirectly capture the similarity structure of the output space
- Have limited expressivity and are prone to overfitting
. Increasing their power comes with a high overhead

PROBLEM: NEURAL LANGUAGE
(FJENERATION

The probability distribution at time ¢ conditioned on y3$~! encoded
in a vector hy € IRY is modeled by linear unit W € RVl b € RIVI:

p(ytlyy ') o< exp(W" h¢ + b)

» Parameterisation depends on the vocabulary size |V

« Power depends on the classifier rank d aka “softmax bottleneck”

PREVIOUS WORK

Weight tying [PW17| matrix W with the word embedding E &
RVI*d helps but still lacks parameter sharing across outputs:

Eh; + b

Bilinear mapping |G18| explicitly shares parameters across outputs

through matrix Wi:
EWih; +b

Dual nonlinear mapping |P18| shares parameters across outputs
and contexts through a nonlinear joint space:

Gout(E)gin(hg) + b

LIMITATIONS:

|@t7)ed| < |@bil7jnear‘ S |@dual‘ S |@ba56‘

« Shallow output space modeling: power depends on the rank d

» Tendency to overfit: increased power leads to undesired effects

PROPOSED ARCHITECTURE OVERVIEW
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We propose a deep output layer architecture based on the general
form and the basic principles of previous work, the power of which
no longer depends on the classifier rank d:

p(ye|yi™") o exp(E"hy + b)

LABEL ENCODER NETWORK
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Shares parameters across outputs through a deep residual output
mapping with depth & while keeping the rank d fixed:

EX — fHEE1) = o@Dy 4 pl)
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PROPERTIES

Preserving information with residual connections to the word
embedding and, optionally, to the outputs of previous layers:

k) — f(@(E(k—l)) + gk LR
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Controlling power by increasing the projection depth &:
‘@dm'll‘ ~ k X (d X d)

Avoiding overfitting with standard or variational dropout in be-
tween each of the k£ projection layers:
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EVALUATION

We evaluate on two language generation tasks using state-of-the-art
architectures, namely AWD-LSTM [M18] and Transformer [V18].

[LANGUAGE MODELING

PennTreebank | WikiText-2

Model ppl sec/ep @ ppl sec/ep
AWD-LSTM [M18] 573 47 (1.0x) | 65.8 89 (1.0x)
AWD-LSTM-DRILL 557 53 (L.1x) | 619 106 (1.2x)

AWD-LSTM-MoS [Y18] 54.44 139 (3.0x) |61.45 862 (9.7x)

MACHINE TRANSLATION

En—De (32K)
Model bleu min/ep
Transformer (base) [V17] 27.3 111 (1.0x)
Transformer-DRILL (base) 28.1 189 (1.7x)

Transformer (big) V17|  28.4 779 (7.0x)

ABLATION ANALYSIS

Output Layer #Param Penn ;\3 1;(5) “ - V\{e.ighttying [PW17]

Full softmax 43.8M 66.8 ;v 12.5- “\ + gt';er?;nrﬂz:ﬁnlfg. [PH18]

Weight tying [PW17] 24.2M 57.3  Fls 1007 =\ —— DRILL (Ours)

Bilinear map. |G18] | 24.3M 58.5 fg ;(5)

Dual map. [P18] 24.5M 564 3T s

DRILL 1-layer 24.3M 56.2 E@ 0.0

DRILL 2-layers 24.5M 56.0 e e e

DRILL 3-layers ~ 24.7M 55.9 15 R 8 7T % 7 8

DRILL 4-layers 24.8M 55.7 -8 g § &8 % & =
W

ord frequency bins

Deeper output mappings for neural language generation:

» Improve recurrent or self-attentional architectures without
increasing their rank which often leads to high overhead

» Lead to better transfer across the output labels, especially the
low-resource ones

Future work: Explore other generation tasks, learn elaborate/
multi-level descriptions, investigate transterability
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