Multilingual Visual Sentiment Concept Matching

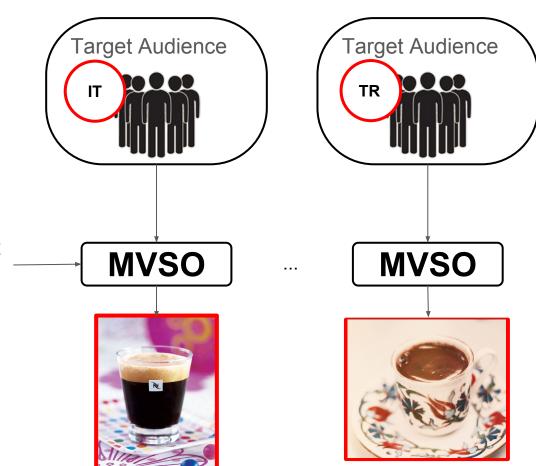
Nikolaos Pappas, Miriam Redi, Mercan Topkara, Brendan Jou, Hongyi Liu, Tao Chen, Shih-Fu Chang IDIAP Yahoo JWPlayer Columbia University

Motivation

- How to analyze and retrieve multimedia data generated by a diverse, multicultural population?
- What are the lexical and visual differences of similar concepts across languages? How do different cultures use images to express sentiment and emotions?

Applications

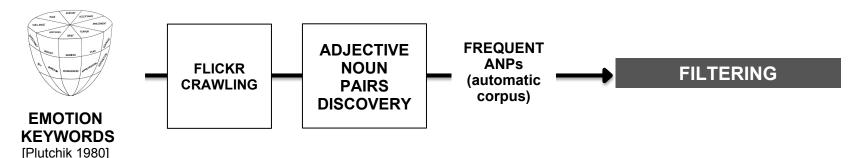
Multilingual sentiment analysis of images



Sentiment

Applications

Target image selection based on cultural characteristics of the audience



Challenges

- How to collect multilingual sentiment-biased images and metadata? MVSO!
- How do different languages describe visual emotions? MVSO!

 How to compare and analyze visual concepts across languages? THIS WORK

Multilingual Visual Sentiment Ontology (MVSO)

old cars, classic cars,..

ORGANIZED COLLECTION OF MULTILINGUAL AFFECTIVE VISUAL CONCEPTS: ANPs

ADJECTIVE-NOUN PAIRS
Affective content, 12 languages, semantically consistent

ANP = ADJECTIVE NOUN PAIR

Brendan Jou, Tao Chen, Nikolaos Pappas, Miriam Redi, Mercan Topkara, Shih-Fu Chang Visual Affect Around the World: A Large-scale Multilingual Visual Sentiment Ontology

ACM Multimedia 2015, Brisbane, Australia

Discovering Multilingual Clusters

- Cultural insights based on semantically related concepts
- Each cluster reveals
 - Wording variation
 - Sentiment variation
 - Visual content variation

CHINESE Sentiment: 3.2

传统_服装

ITALIAN Sentiment: 4.8

Abbigliamento Tradizionale, Costume Tradizionale, Cappello Tradizionale

ENGLISH Sentiment: 4

Traditional Clothing, Traditional Wedding, Traditional Wear, Traditional Costume, Traditional Dress, Fancy Dress

SPANISH Sentiment: 5
Ropa Tradicional, Vestido Antiguo, Traje Tradicional
Vestimenta Tradicional

FRENCH Sentiment: 4.6

Robe Traditionnelle, Costume Traditionnel, Habit Traditionnel

Example: Western vs. Eastern languages

FRENCH: bateaux abandones (abandoned boats sent:1.2)

ENGLISH: old boats sent:1.7

SPANISH: barco abandonado (abandoned boat sent:1.0)

CHINESE: 旧船 (old boats, sent:2.8)

CLUSTER: OLD BOAT ABANDONED BOAT

RUSSIAN: старая лодка (old boat, sent:1.7)

Example: Culturally-unique clusters

- Cultural insights based on distinctive concepts
- Each cluster reveals
 - Uniqueness
 - Expressivity
 - **Cultural specificity**

SPANISH monumento artístico (artistic monument)

políticos corruptos (corrupt politicians)

ITALIAN carnevale ambrosiano (ambrosian carnival)

evasione fiscale (tax evasion)

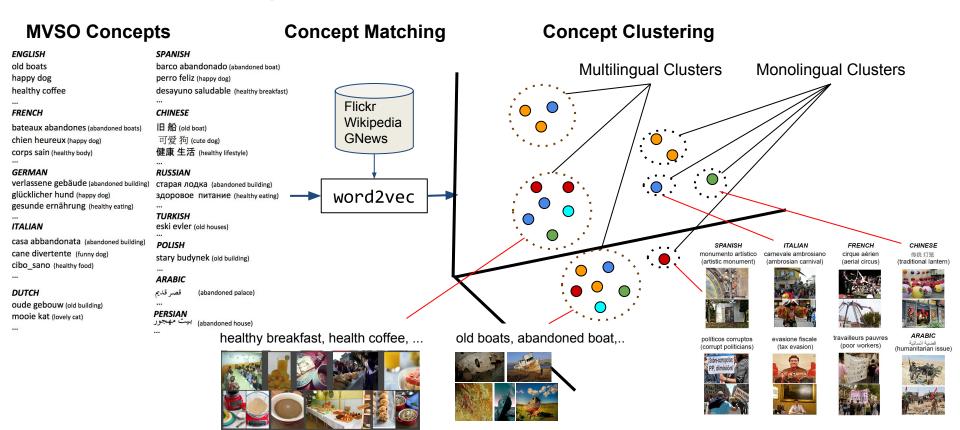
FRENCH

cirque aérien (aerial circus)

travailleurs pauvres (poor workers)

CHINESE

传统 灯笼 (traditional lantern)


ARABIC قضية انسانية (humanitarian issue)

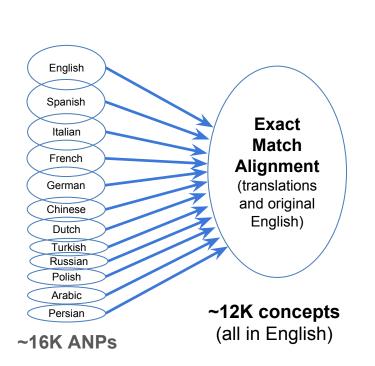
Proposed Framework

- 1. Translate each original ANP into English
- 2. Use word embeddings to convert ANPs to vectors and cluster

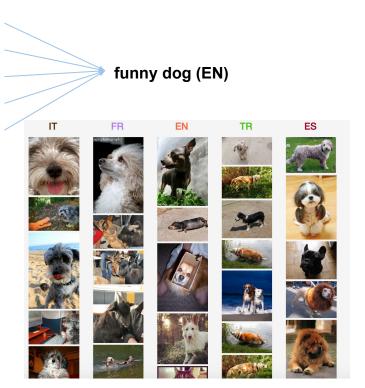
DATA

Multilingual Visual Sentiment Ontology (MVSO) Data

- 7.36M+ Flickr images
- ~16K affective visual concepts: Adjective-Noun Pairs (ANPs)
- Co-occurrence (emotion, ANP)
- Sentiment value (text-based)
- 12 languages detected


Treno storico
Bella giornata
Treno veloce

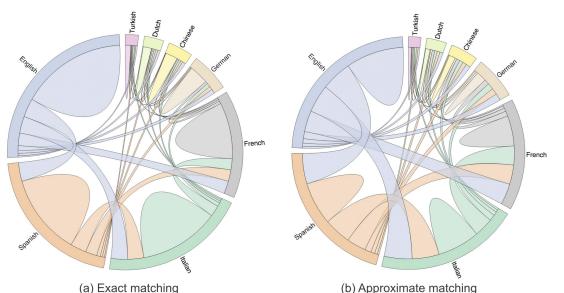
Language	Concepts	Images
English	4421	447997
Spanish	3381	37528
Italian	3349	25664
French	2349	16807
Chinese	504	5562
German	804	7335
Dutch	348	2226
Russian	129	800
Turkish	231	638
Polish	63	477
Persian	15	34
Arabic	29	23


CONCEPT MATCHING

Exact Concept Matching with English Translation

Reflection of what we would see depending solely on translation to understand other cultures and their interpretation of concepts (wedding, new year, traditional costumes)

cane divertente (IT)
chien drôle (FR)
funny dog (EN)
komik köpek (TR)
perro gracioso (ES)

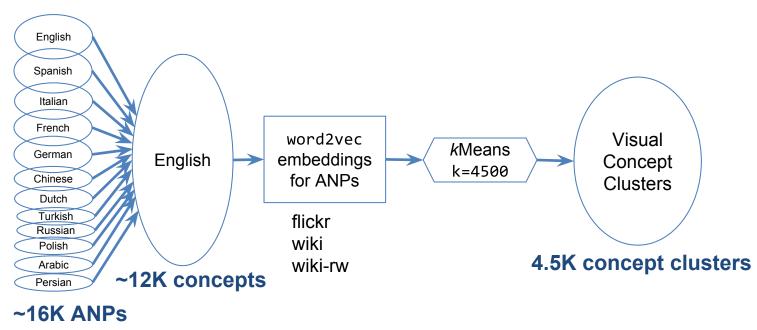

Limitations of Exact Concept Matching

Low ratio of crosslingual related concepts

9.8K ANPs in monolingual clusters with exact matching based alignment

Number of monolingual clusters was below 2.5K with all approximate

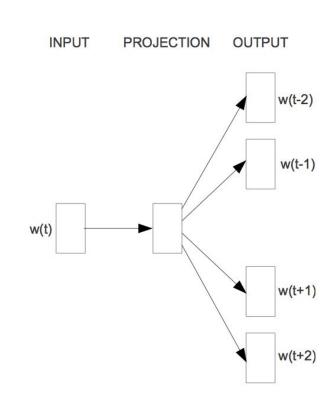
matching clustering methods



SPANISH: desayuno saludable (healthy breakfast) ENGLISH: healthy coffee

CONCEPT CLUSTERING

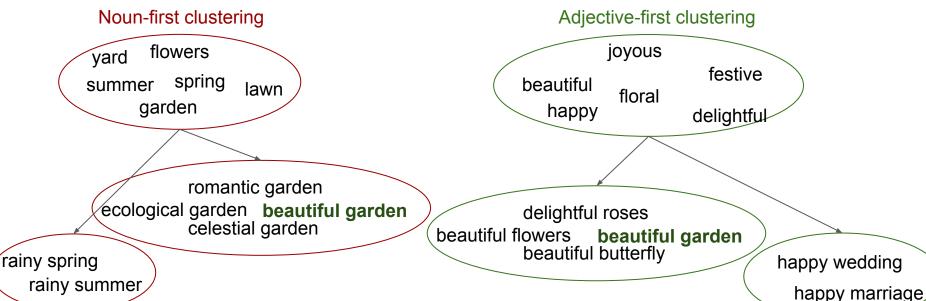
Approximate Multilingual Concept Matching


Single-stage: Use embeddings that are directly learned keeping ANPs as single tokens

k value is decided using inertia, sentiment and semantic consistency

Word Embedding Model

- Skip-gram model (word2vec)¹
 - Google News 100B
 - Wikipedia 1.74B
 - Wikipedia + Reuters + WSJ 1.96B
 - Flickr 100 Million 0.75B
- Concept vectors
 - Sum of words composition
 - Directly learned (ANPs as tokens)



¹ Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado and Jeffrey Dean Distributed Representations of Words and Phrases and their Compositionality NIPS, Lake Tahoe, Nevada, USA, 2013

Approximate Concept Matching: Two-stage

- Noun-first clustering: concepts that talk about similar objects
- Adjective-first clustering: concepts about closely related emotions
- Ontologies to easily explore the dataset

We matched multilingual concepts...

CHINESE Sentiment: 3.2

ITALIAN Sentiment: 4.8

ENGLISH Sentiment: 4

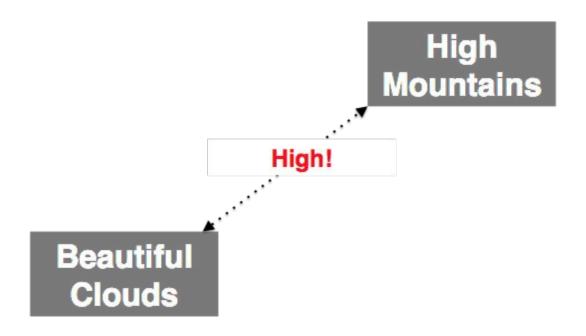
Traditional Clothing, Traditional Wedding, Traditional Wear, Traditional Costume, Traditional Dress, Fancy Dress

SPANISH Sentiment: 5

Ropa Tradicional, Vestido Antiguo, Traje Tradicional Vestimenta Tradicional

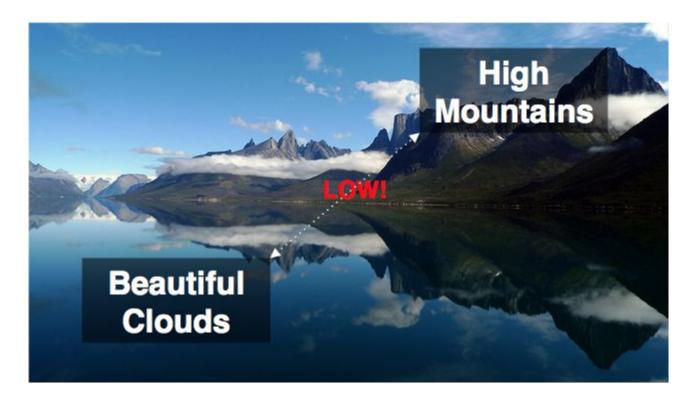
FRENCH Sentiment: 4.6

Robe Traditionnelle, Costume Traditionnel, Habit Traditionnel


... but how do we evaluate the clustering methods?

- Semantic consistency
- Sentiment consistency

EVALUATION


SEMANTIC CONSISTENCY

Clustering Evaluation: Visual semantic relatedness

Semantic distance

Clustering Evaluation: Visual semantic relatedness

Visually-grounded semantic distance

Clustering Evaluation: Visual semantic relatedness

- How often do two visual concepts appear together?
 - \circ Tag co-occurrence matrix (n \times n)
- ANPs can be described as
 - Co-occurrence vectors h_i, h_j in Rⁿ
 - n is the number of translated ANPs.

Visual semantic distance between ANPs

$$d(ANP_i, ANP_j) = 1 - cosine(h_i, h_j)$$

Clustering Evaluation: Semantic consistency

Visual **Semantic** Relatedness for different clustering methods

For each clustering method:

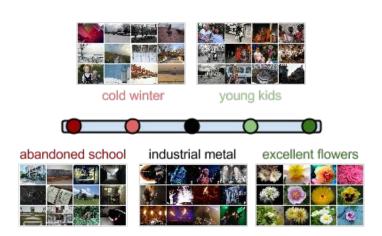
$$\mathrm{sem}_C = \frac{1}{C} \sum_{c=1}^C \underbrace{\sum_{j:j\neq i}^{|\{i,\dots,N_c\}|} d(\mathrm{ANP}_{c,i},\mathrm{ANP}_{c,j})}_{N_c}$$
 Average over all clusters

Average visual semantic distance in a cluster for all ANP pairs whose semantic distance is greater than 0

C = number of non-unary clusters **Nc** = number of ANPs for a cluster c

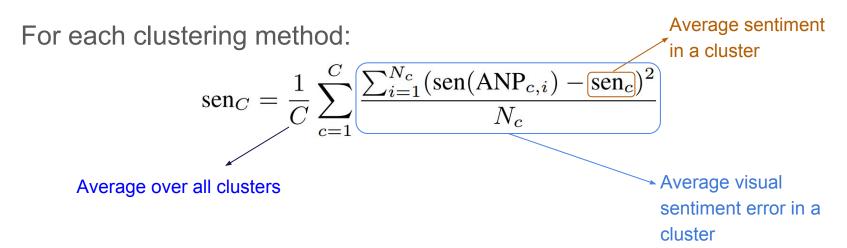
Inter-cluster distance was not significantly different

EVALUATION


SENTIMENT CONSISTENCY

Clustering Evaluation: Visual sentiment of concepts

Visual **Sentiment** Consistency for different clustering methods


MULTIMODAL CROWDSOURCING EXPERIMENT

- 11 languages
- Native speakers
- Five grades
- Multimodal: Text + Images

Clustering Evaluation: Sentiment consistency

Visual **Sentiment** Consistency for different clustering methods

C = number of non-unary clustersNc = number of ANPs for a cluster c

EVALUATION

RESULTS

Clustering Evaluation: Results on Full Corpus

Single-step clustering performs better than two-step clustering

Directly learned ANP representations better than word-based ones

Method	Embeddings	Sentiment Cons.	Semantic Cons.	Overall Cons.
2-stage_noun	gnews (w=5)	0.278	0.676	0.477
2-stage_adj	gnews (w=5)	0.161	0.614	0.388
1-stage	wiki-anp (w=10)	0.239	0.659	0.449
1-stage	wiki_rw-anp (w=10)	0.242	0.582	0.412
1-stage	flickr-anp (w=10)	0.242	0.535	0.388
1-stage	wiki-anp (w=5)	0.239	0.659	0.449
1-stage	wiki_rw-anp (w=5)	0.234	0.579	0.407
1-stage	flickr-anp (w=5)	0.246	0.532	0.389

Pictures of people are different from other photographs.

- Faces grasp human attention more than other subjects (neuroscience, computational social science)
- Eastern and Western
 Languages assign emotions
 differently (psychology theory)

Grandi Persone

Ojos Lindos

Regarde Triste

Güzel Kız

Portrait-Based Sentiment Ontology using Face Detection

- Face ANPs (~2K, 3M images)
 have higher sentiment!
- Highest sentiment difference:
 Chinese 3.6 → 4.3 (+~20%)
- Lowest sentiment difference:
 Turkish 3.6 → 3.5 (-0.3%)

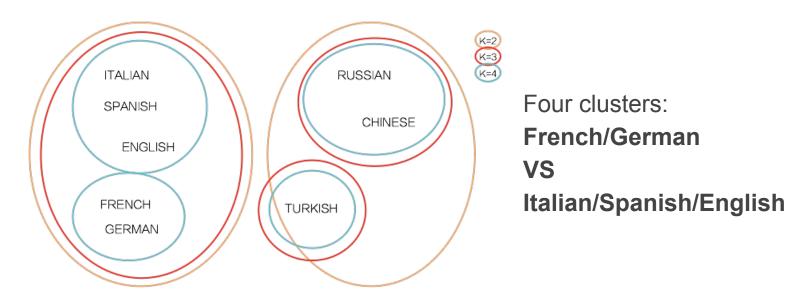
Clustering Evaluation on Face-ANPs: Results

- Similar results as full corpus
- Clusters with more languages → Higher sentiment!
- Different Sentiment for different languages (Eastern vs. Western)

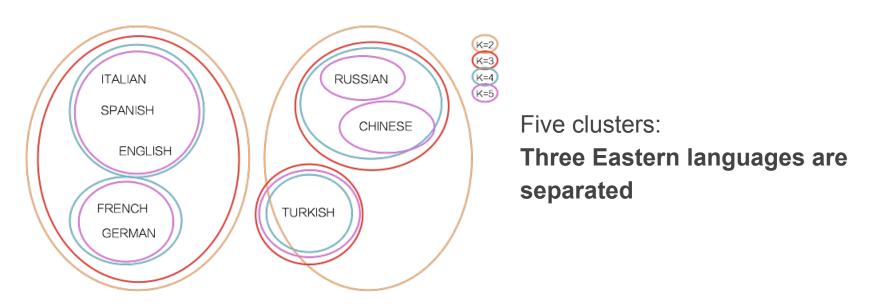
Method	Embeddings	Sentimen t Cons.	Semantic Cons.	Overall Cons.
2-stage_noun	wiki (w=5)	0.534	0.586	0.56
2-stage_noun	wiki_rw (w=5)	0.510	0.614	0.562
2-stage_noun	flickr (w=5)	0.526	0.513	0.519
2-stage_noun	gnews (w=5)	0.309	0.569	0.439
2-stage_adj	wiki (w=5)	0.581	0.930	0.755
2-stage_adj	wiki_rw (w=5)	0.472	0.560	0.516
2-stage_adj	flickr (w=5)	0.455	0.519	0.487
2-stage_adj	gnews (w=5)	0.178	0.522	0.350
1-stage	wiki-anp (w=10)	0.240	0.576	0.408
1-stage	wiki_rw-anp (w=10)	0.257	0.508	0.382
1-stage	flickr-anp (w=10)	0.262	0.489	0.375
1-stage	wiki-anp (w=5)	0.250	0.583	0.416
1-stage	wiki_rw-anp (w=5)	0.281	0.522	0.402
1-stage	flickr-anp (w=5)	0.280	0.502	0.391

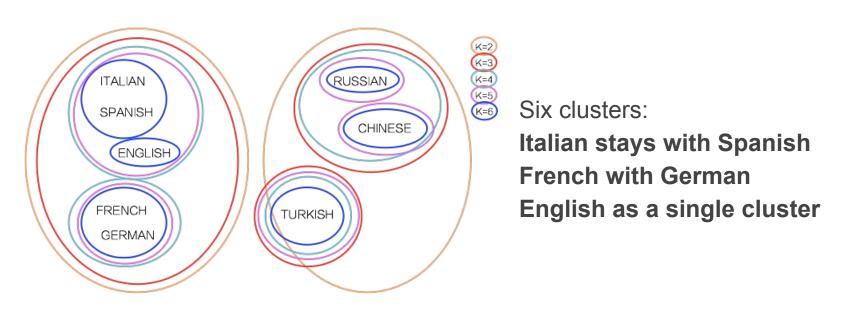
Which languages are most similar when talking about faces?

Which languages are most similar when talking about faces?



Two clusters: **Eastern vs. Western**As seen in previous psychology studies


Which languages are most similar when talking about faces?


Which languages are most similar when talking about faces?

Which languages are most similar when talking about faces?

Which languages are most similar when talking about faces?

Summary

Domain consistency

 Word embeddings trained on a visually grounded corpus (Flickr) improve cluster quality for ANPs mined from visually grounded data

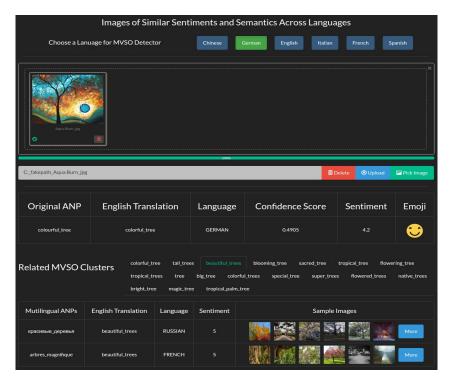
Single-token clustering

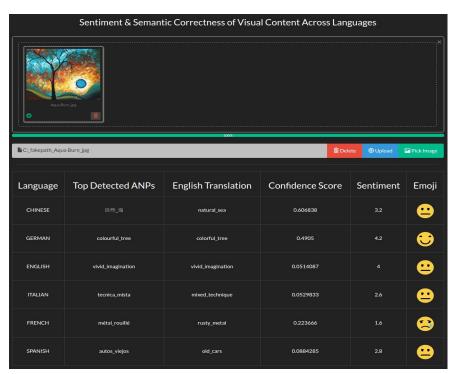
Clustering adjectives noun pairs as single tokens proved merit

Visual semantic relatedness

 Measuring relatedness by tag co-occurrence is an effective evaluation for semantic visual grounding

Crowdsourced ANP sentiment

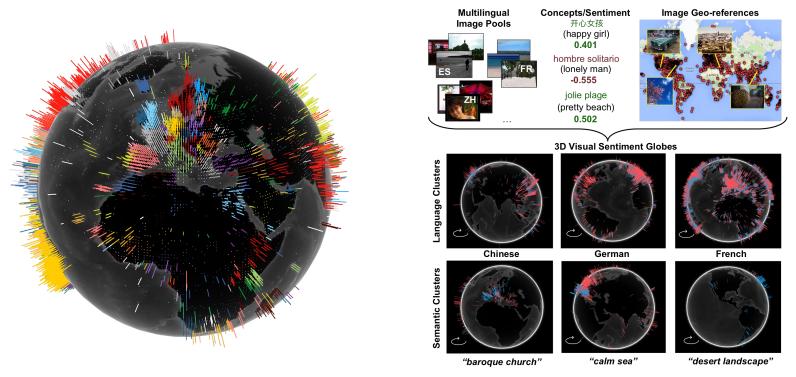

Gathered a crowdsourced dataset of multimodal sentiment by ANPs


Eastern vs. Western

We automatically discovered interesting and intuitive cultural differences

Demo

Complura: Exploring and Leveraging a Large-scale Multilingual Visual Sentiment Ontology http://mvso.cs.columbia.edu/complura.html



Visit the demo sessions for a live demo!

Demo

SentiCart: Cartography and Geo-contextualization for Multilingual Visual Sentiment http://mvso.cs.columbia.edu/senticart.html

Visit the demo sessions for a live demo!

Thank you for your interest and questions!

For contacts and download links: http://mvso.cs.columbia.edu

Question: What's Next?

- Use semantically aligned representations instead of translating to pivot
- Visually align ANP representations based on tag co-occurrence
- Improve detection, visual sentiment prediction and recommendation

