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Summary

e Non-autoregressive MT (NAR) is a recent fast alternative to AR MT.
e Parallel generation often underperforms yet outpaces left-to-right
generation on a GPU.
e Reexamines the speed-accuracy tradeoff.
o Suboptimal Layer Allocation
o Insufficient speed Measurement
o Lack of Knowledge Distillation for AR Baselines
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Reevaluating NAR




Layer Allocation

e Equal depths in the encoder and decoder are typically assumed.

e They have different accuracy and speed implications.




Layer Allocation

e Equal depths in the encoder and decoder are typically assumed.
e They have different accuracy and speed implications.
e Experiments with varying depths.
e Deep-Shallow speeds up AR MT with accuracy retained.
o AR's speed disadvantage is overestimated.
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Speed Measure

e S1 (Most NAR Works)
o 1 sentence (utterance) at a time
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Speed Measure

e S1 (Most NAR Works)

o 1 sentence (utterance) at a time

o Instantaneous Translation, Simultaneous Translation,...
e Smax

o Maximum Batch Size

o Translate Wikipedia, EU Documents, ...
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Knowledge Distillation

e Mitigates Multimodality (Gu et al. 2018).

o Almost all NAR models need KD.

o AR MT output is less diverse than human (Shen et al. 2019).



https://arxiv.org/abs/1711.02281
https://arxiv.org/pdf/1902.07816.pdf

Experiments




Setups: Benchmarks

e Follow prior NAR works (Ghazvininejad et al., 2019; Kasai et al., 2020)
e BPE subwords

Train Pairs | Teacher Transformer Model
WMT 2016 EN-DE | 4.5M Large Base
WMT 2016 EN-RO | 610K Base Base
WMT 2017 EN-ZH | 20M Large Base
WMT 2014 EN-FR | 36M Large Base
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https://arxiv.org/abs/1904.09324
https://arxiv.org/pdf/2001.05136.pdf

Speed-Accuracy Tradeoff S1
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AR 6-6 > NAR but slow in S1.
AR 6-1: S1 speedup but loss in BLEU.

AR 12-1: a balanced middle ground.
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Speed-Accuracy Tradeoff S1
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Speed-Accuracy Tradeoff Smax
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Compare AR and NAR




S1 Speed Constraint
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S1 Speed Constraint
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S1 Speed Constraint

e WMT EN-DE Test
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Conclusion and Future Prospects
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Conclusion

e AR’s speed-accuracy balance improves with deep-shallow
configurations.

e Future work in NAR should consider layer allocation, knowledge
distillation, and speed measurement.

e Deep-shallow configurations for other seq2seq tasks? Seq2seq
pretraining like T5 or BART?
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https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html
https://ai.facebook.com/research/publications/bart-denoising-sequence-to-sequence-pre-training-for-natural-language-generation-translation-and-comprehension/

Thank you!

https://github.com/jungokasai/deep-shallow




