

# **Self-Attentive Residual Decoder** for Neural Machine Translation



•••

Lesly Miculicich<sup>\*†</sup>, Nikolaos Pappas<sup>\*</sup>, Dhananjay Ram<sup>\*†</sup>, Andrei Popescu-Belis<sup>‡</sup> \*Idiap Research Institute, <sup>†</sup>EPFL, <sup>‡</sup>HEIG-VD / HES-SO

## **Motivation**

Limitations of the RNN-based decoder for NMT

- The RNN's internal memory is shared across words and is prone to a recency bias.
- Does not fully capture the structure of language.

**Proposed** approach:

• Enhance the RNN memory with direct and selective access to past.

## **Self-Attentive Residual Decoder**



The residual connections facilitate the flow of information.

The self-attention allows selective use of previously predicted words.

# **Other Self-Attentive Networks**

## Memory RNN

RNN with memory cells of previous representations [Cheng et al., EMNLP 2016]



**Self-Attentive RNN** RNN with a summary vector from past predictions [Daniluk et al., ICLR 2016]



Baseline NMT decoder Self-attentive residual decoder  $p(y_t|y_1, ..., y_{t-1}, c_t) \approx g(h_t, c_t, y_{t-1}) \quad p(y_t|y_1, ..., y_{t-1}, c_t) \approx g(h_t, c_t, d_t)$  $h_t = f(h_{t-1}, y_{t-1})$  $h_t = f(h_{t-1}, y_{t-1})$  $d_t = f_a(y_1, \dots, y_{t-1})$ 

- The baseline NMT decoder uses a residual connection to the previously predicted word  $y_{t-1}$
- We propose to use residual connections from all previously translated words  $y_1, \ldots, y_{t-1}$  with a summary vector  $d_t$ .



## **Self-Attentive Residual**



# **Experimental Setup**

#### Datasets : En-ZH UN Corpus 0.5M, Es-En WMT 2.1M, En-De WMT 4.5M

## **Self-attention** Matrices:



Architecture: Attention-based NMT with GRUs of dimension 1024, 500 for word embeddings, and vocabulary of 50K.

## Results

|                                       | lΘl    |       | BLEU  |       |
|---------------------------------------|--------|-------|-------|-------|
| Models                                | 1 - 1  | En–Zh | Es–En | En–De |
| SMT baseline                          |        | 21.6  | 25.2  | 23.2  |
| NMT transformer (comparable model)    | 109.0M | 22.0  | 25.9  | 24.1  |
| NMT baseline                          | 108.7M | 22.6  | 25.4  | 24.8  |
| + Memory RNN                          | 109.7M | 22.5  | 25.5  | 24.9  |
| + Self-attentive RNN                  | 110.2M | 22.0  | 25.1  | 24.3  |
| + Mean residual connections           | 108.7M | 23.6  | 25.7  | 24.9  |
| + Self-attentive residual connections | 108.9M | 24.0  | 26.3  | 25.5  |
|                                       |        | C     | _     |       |

BLEU on *tokenized* text.  $|\Theta|$  is the number of parameters.

 Self-attentive residual connections outperform other models, while using fewer parameters than other self-attentive methods.

Code at: https://github.com/idiap/Attentive\_Residual\_Connections\_NMT

• Formation of "phrases" when grouping words by their focus of attention.

# **Hypothesized Syntactic Structures:**



• The trees are obtained from the attention weights of the self-attentive residual connections through a binary tree parser algorithm.

## Conclusion

- We proposed self-attentive residual learning framework.
- Improvements over a standard baseline, and two variants of self-attention.
- Analysis of the attention shows syntactic-like structures.
- It can be applied to other tasks based on RNNs.

## Acknowledgements

Supported by the European Union Horizon 2020 SUMMA project (grant 688139,

www.summa-project.eu).

