Hao Peng, Nikos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, Lingpeng Kong

Transformers

State-of-the-art results in many sequence modeling tasks

- Machine translation (Vaswani et al., 2017)
- Language modeling (Ott et al., 2018)
- Pretraining (Delvin et al., 2019)

Transformers

State-of-the-art results in many sequence modeling tasks

- Machine translation (Vaswani et al., 2017)
- Language modeling (Ott et al., 2018)
- Pretraining (Delvin et al., 2019)
- Reinforcement learning (Parisotto et al., 2019)
- Computer vision (Parmar et al., 2018; Dosovitskiy et al., 2020)
- Computational biology (Choromanski et al., 2020)

•

query

key

value

input

query

key

value

input

query

key

value

input

query

key

value

input

time

Attention Complexity: Seq2seq Decoding

Attention Complexity: Seq2seq Decoding

Attention Complexity: Seq2seq Decoding

Overview

Transformers: quadratic overhead, limited in

- Character-level language modeling
- Document-level machine translation
- Speech

•

Overview

Transformers

- State-of-the-art results in many sequence modeling tasks
- Quadratic complexity, less well-suited for long sequences

This Work: Random Feature Attention

• Strong performance

Scales linearly in sequence length

Random Fourier Features

Rahimi and Recht (2007)

Goal

$$\exp \mathbf{q}^{\mathsf{T}} \mathbf{k} \approx \boldsymbol{\phi}(\mathbf{q})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{k})$$

Random Fourier Features

Rahimi and Recht (2007)

Goal

$$\exp \mathbf{q}^{\mathsf{T}} \mathbf{k} \approx \boldsymbol{\phi}(\mathbf{q})^{\mathsf{T}} \boldsymbol{\phi}(\mathbf{k})$$

Let
$$\phi(\mathbf{x}) = \sqrt{1/D} \left[\sin\left(\mathbf{w}_1^{\top}\mathbf{x}\right), \dots, \sin\left(\mathbf{w}_D^{\top}\mathbf{x}\right), \cos\left(\mathbf{w}_1^{\top}\mathbf{x}\right), \dots, \cos\left(\mathbf{w}_D^{\top}\mathbf{x}\right) \right]^{\top}$$
 where $\mathbf{w}_i \sim \mathcal{N}(0, 1)$

Then

$$\mathbb{C}\mathbb{E}[\phi(\mathbf{q})^{\top}\phi(\mathbf{k})] = \exp \mathbf{q}^{\top}\mathbf{k}$$

constant scalar depending on the norms of $\,\mathbf{q}$ and $\,\mathbf{k}$

From Attention to Random Feature Attention

$$\sum_{i} \frac{\exp \mathbf{q}^{\mathsf{T}} \mathbf{k}_{i}}{\sum_{j} \exp \mathbf{q}^{\mathsf{T}} \mathbf{k}_{j}} \mathbf{v}_{i}^{\mathsf{T}}$$

q query

 \mathbf{k}_i keys

 \mathbf{V}_i values

From Attention to Random Feature Attention

q query

 \mathbf{k}_i keys

 \mathbf{V}_i values

$$\sum_{i} \frac{\exp \mathbf{q}^{\mathsf{T}} \mathbf{k}_{i}}{\sum_{j} \exp \mathbf{q}^{\mathsf{T}} \mathbf{k}_{j}} \mathbf{v}_{i}^{\mathsf{T}}$$

$$\approx \sum_{i} \frac{\boldsymbol{\phi}(\mathbf{q})^{\top} \boldsymbol{\phi}(\mathbf{k}_{i}) \otimes \mathbf{v}_{i}}{\sum_{j} \boldsymbol{\phi}(\mathbf{q})^{\top} \boldsymbol{\phi}(\mathbf{k}_{j})}$$

$$\mathbb{E}\left[\boldsymbol{\phi}(\mathbf{q})^{\top}\boldsymbol{\phi}(\mathbf{k})\right] = \exp\mathbf{q}^{\top}\mathbf{k}$$

Random Fourier features

Rahimi and Recht (2007)

From Attention to Random Feature Attention

q query

 \mathbf{k}_i keys

 \mathbf{V}_i values

$$\sum_{i} \frac{\exp \mathbf{q}^{\mathsf{T}} \mathbf{k}_{i}}{\sum_{j} \exp \mathbf{q}^{\mathsf{T}} \mathbf{k}_{j}} \mathbf{v}_{i}^{\mathsf{T}}$$

$$\approx \sum_{i} \frac{\boldsymbol{\phi}(\mathbf{q})^{\top} \boldsymbol{\phi}(\mathbf{k}_{i}) \otimes \mathbf{v}_{i}}{\sum_{j} \boldsymbol{\phi}(\mathbf{q})^{\top} \boldsymbol{\phi}(\mathbf{k}_{j})}$$

$$= \frac{\boldsymbol{\phi}(\mathbf{q})^{\top} \sum_{i} \boldsymbol{\phi}(\mathbf{k}_{i}) \otimes \mathbf{v}_{i}}{\boldsymbol{\phi}(\mathbf{q})^{\top} \sum_{j} \boldsymbol{\phi}(\mathbf{k}_{j})}$$

Moving $\phi(\mathbf{q})$ out of the sum

$$egin{aligned} \mathbf{S} &= \sum_i oldsymbol{\phi}(\mathbf{k}_i) \otimes \mathbf{v}_i \ \mathbf{z} &= \sum_j oldsymbol{\phi}(\mathbf{k}_j) \end{aligned}$$

output =
$$\phi(\mathbf{q})^{\mathsf{T}} \mathbf{S} / (\phi(\mathbf{q})^{\mathsf{T}} \mathbf{z})$$

$$\mathbf{S} = \sum_{i} \boldsymbol{\phi}(\mathbf{k}_i) \otimes \mathbf{v}_i$$

$$\mathbf{z} = \sum_{j} \boldsymbol{\phi}(\mathbf{k}_{j})$$

output =
$$\phi(\mathbf{q})^{\mathsf{T}} \mathbf{S} / (\phi(\mathbf{q})^{\mathsf{T}} \mathbf{z})$$

$$\mathbf{S} = \sum_{i} \boldsymbol{\phi}(\mathbf{k}_i) \otimes \mathbf{v}_i$$

$$\mathbf{z} = \sum_{j} oldsymbol{\phi}(\mathbf{k}_{j})$$

per step: O(1)

overall: $\mathcal{O}(N)$

Construct ϕ such that:

$$\sum_{i} \frac{\exp \mathbf{q}^{\top} \mathbf{k}_{i}}{\sum_{j} \exp \mathbf{q}^{\top} \mathbf{k}_{j}} \mathbf{v}_{i}^{\top} \approx \frac{\boldsymbol{\phi}(\mathbf{q})^{\top} \sum_{i} \boldsymbol{\phi}(\mathbf{k}_{i}) \otimes \mathbf{v}_{i}}{\boldsymbol{\phi}(\mathbf{q})^{\top} \sum_{j} \boldsymbol{\phi}(\mathbf{k}_{j})}$$

- Linear time and constant space in decoding
- Drop-in substitute for softmax attention
- Suitable for finetuning applications

Construct ϕ such that:

$$\sum_{i} \frac{\exp \mathbf{q}^{\top} \mathbf{k}_{i}}{\sum_{j} \exp \mathbf{q}^{\top} \mathbf{k}_{j}} \mathbf{v}_{i}^{\top} \approx \frac{\boldsymbol{\phi}(\mathbf{q})^{\top} \sum_{i} \boldsymbol{\phi}(\mathbf{k}_{i}) \otimes \mathbf{v}_{i}}{\boldsymbol{\phi}(\mathbf{q})^{\top} \sum_{j} \boldsymbol{\phi}(\mathbf{k}_{j})}$$

- Linear time and constant space in decoding
- Drop-in substitute for softmax attention
- Suitable for finetuning applications
- Size of feature map: 64 or 128

Recurrent Updates

$$\mathbf{S}_{t} = \mathbf{S}_{t-1} + \boldsymbol{\phi}(\mathbf{k}_{t}) \otimes \mathbf{v}_{t}$$

$$\mathbf{z}_{t} = \mathbf{z}_{t-1} + \boldsymbol{\phi}(\mathbf{k}_{t})$$

$$\text{output}_{t} = \boldsymbol{\phi}(\mathbf{q}_{t})^{\top} \mathbf{S}_{t} / \boldsymbol{\phi}(\mathbf{q}_{t})^{\top} \mathbf{z}_{t}$$

Applications

- Language model
- Decoder self attention in a sequence-to-sequence model

Recency Bias with Learned Gates

$$\mathbf{S}_{t} = \eta_{t} \cdot \mathbf{S}_{t-1} + \phi(\mathbf{k}_{t}) \otimes \mathbf{v}_{t}$$

$$\mathbf{z}_{t} = \eta_{t} \cdot \mathbf{z}_{t-1} + \phi(\mathbf{k}_{t})$$

$$\mathbf{output}_{t} = \phi(\mathbf{q}_{t})^{\mathsf{T}} \mathbf{S}_{t} / \phi(\mathbf{q}_{t})^{\mathsf{T}} \mathbf{z}_{t}$$

learned sigmoid gate

$$\eta_t = \sigma(\mathbf{w}^\mathsf{T} \mathbf{x} + b)$$

Experiments: Machine Translation

Dataset: WMT'14 (Bojar et al., 2014)

- EN->DE, 4.5M training instances
- EN->FR, 35.8M training instances

Implementation:

- Based on transformer base (Vaswani et al., 2017)
- Replace decoder causal and cross attention with random feature attention
- Random feature size: 64 causal, 128 cross
- Trained for up to 350K steps; beam size 4; average 10 checkpoints

Test set BLEU on WMT'14 EN->DE

beam size 4, average 10 checkpoints

Test set BLEU on WMT'14 EN->FR

Experiments with Language Modeling

Dataset:

• WikiText-103 (Merity et al., 2016). 103M training data, 268K vocab size

Implementation:

- Based on Baevski and Auli, 2019
- Replace all self attention with random feature attention
- Random feature size: 64; context window 512, not "stateful"
- All models trained for 150K steps

Wikitext-103 test set perplexity (lower is better)

Decoding Speed & Memory vs. Lengths

Wrap-up

• RFA:

- Linear complexity attention with random feature methods
- Well-suited for tasks involving long sequences
- Recurrent style update; intuitive ways to connect to gated RNNs

• Experiments:

- Strong performance in language modeling and machine translation
- 1.9x speed up in MT decoding; more for longer text
- The only model that is competitive in both efficiency and accuracy in long text classification (Tay et al., 2021)

Wrap-up

RFA:

- Linear complexity attention with random feature methods
- Well-suited for tasks involving long sequences
- Recurrent style update; intuitive ways to connect to gated RNNs

• Experiments:

- Strong performance in language modeling and machine translation
- 1.9x speed up in MT decoding; more for longer text
- The only model that is competitive in both efficiency and accuracy in long text classification (Tay et al., 2021)

Notes:

- Harder to achieve time saving when input is fully revealed: encoder, teacher-forcing training
- Using 128/64 feature maps; smaller ones works with larger batches

Thank You!

collaborators

bit.ly/3rnYRTw

DeepMind

code

bit.ly/3lSzisS