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Transformers

State-of-the-art results in many sequence modeling tasks
* Machine translation (Vaswani et al., 2017)

* Language modeling (Ott et al., 2018)

* Pretraining (Delvin et al., 2019)



Transformers

State-of-the-art results in many sequence modeling tasks

* Machine translation (Vaswani et al., 2017)

* Language modeling (Ott et al., 2018)

* Pretraining (Delvin et al., 2019)

* Reinforcement learning (Parisotto et al., 2019)

 Computer vision (Parmar et al., 2018; Dosovitskiy et al., 2020)
 Computational biology (Choromanski et al., 2020)
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Attention Complexity: Seq2seq Decoding
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Attention Complexity: Seq2seq Decoding

time
causal attn.: O(N) each step O(N) + O(N)
overall O(N?)
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Overview

Transformers: quadratic overhead, limited In
» Character-level language modeling
 Document-level machine translation

e Speech



Overview

Transformers
o State-of-the-art results in many sequence modeling tasks
* Quadratic complexity, less well-suited for long sequences

This Work: Random Feature Attention
e Strong performance

* Scales linearly in sequence length



Random Fourier Features
Rahimi and Recht (2007)
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Random Fourier Features
Rahimi and Recht (2007)

Goal

| et b (x) = :Sin (vv1 X) ...,sin (WDX) , COS (vv1 X) ..., COS (WDX):

where
Then

constant scalar depending on the norms of ¢ and k



From Attention to Random Feature Attention
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From Attention to Random Feature Attention
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Random Fourier features
Ranimi and Recht (2007)




From Attention to Random Feature Attention
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Random Feature Attention
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per step: O(1)
overall: O(N)



Random Feature Attention

Construct @ such that:

Z expq k; o T Y 0(k) ® vy
- Zj expq ' k; l Zj ¢(k;)
* Linear time and constant space in decoding

* Drop-in substitute for softmax attention
» Suitable for finetuning applications



Random Feature Attention

Construct @ such that:

Z expq k; o T Y 0(k) ® vy
- Zj expq ' k; l Zj ¢(k;)
* Linear time and constant space in decoding
* Drop-in substitute for softmax attention

» Suitable for finetuning applications
» Size of feature map: 64 or 128



Random Feature Attention

Recurrent Updates

z; = z;—1 + P(ky) Applications
output, = TSt / Zy * |Language model

 Decoder self attention in a
sequence-to-sequence model



Random Feature Attention

Recency Bias with Learned Gates

learned sigmoid gate

= O'(WTX + b)



Random Feature Attention

Sequence-to-sequence decoding

encoder 5 5
feature map | S
sum over seguence...
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Random Feature Attention

Sequence-to-sequence decoding

output1



Random Feature Attention

Sequence-to-sequence decoding

causal attn. -
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Random Feature Attention

Sequence-to-sequence decoding
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Random Feature Attention

Sequence-to-sequence decoding

causal attn.
O(1)




Experiments: Machine Translation

Dataset: WMT'14 (Bojar et al., 2014)
« EN->DE, 4.5M training instances
« EN->FR, 35.8M training instances

Implementation:

 Based on transformer base (Vaswani et al., 2017)

 Replace decoder causal and cross attention with random feature attention
 Random feature size: 64 causal, 128 cross

* Trained for up to 350K steps; beam size 4; average 10 checkpoints



Test set BLEU on WMT'14 EN->DE
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Test set BLEU on WMT'14 EN->FR
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Experiments with Language Modeling

Dataset:
o WikiText-103 (Merity et al., 2016). 103M training data, 268K vocab size

Implementation:

e Based on Baevski and Auli, 2019

 Replace all self attention with random feature attention

e Random feature size: 64; context window 512, not “stateful”
* All models trained for 150K steps



Wikitext-103 test set perplexity (lower is better)
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Decoding Speed & Memory vs. Lengths
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Wrap-up

* RFA:

* Linear complexity attention with random feature methods
* Well-suited for tasks involving long sequences
* Recurrent style update; intuitive ways to connect to gated RNNs

* Experiments:
e Strong performance in language modeling and machine translation
* 1.9x speed up in MT decoding; more for longer text

* The only model that is competitive in both efficiency and accuracy in
long text classification (Tay et al., 2021)



Wrap-up

* RFA:

* Linear complexity attention with random feature methods
* Well-suited for tasks involving long sequences
* Recurrent style update; intuitive ways to connect to gated RNNs

* Experiments:
e Strong performance in language modeling and machine translation
* 1.9x speed up in MT decoding; more for longer text

* The only model that is competitive in both efficiency and accuracy in
long text classification (Tay et al., 2021)

e Notes:

* Harder to achieve time saving when input is fully revealed: encoder,
teacher-forcing training

» Using 128/64 feature maps; smaller ones works with larger batches
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