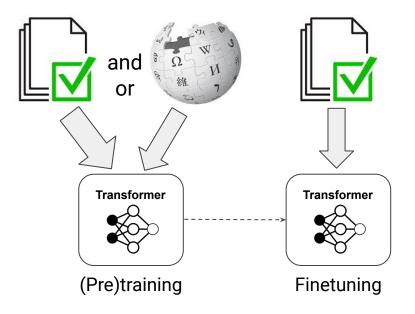
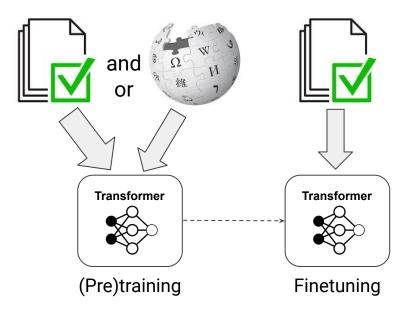
Large-context and efficient models of language

Nikolaos Pappas



Horizon 2020 European Union Funding for Research & Innovation



Dominant paradigm

Huge impact in NLP tasks.

Dominant paradigm

- X Big data requirements
- X Poor on rare or new words
- X
 - Computationally expensive

Huge impact in NLP tasks.

My past research

Build models that learn from language efficiently

Modeling documents

Representation learning [JAIR'17;EMNLP'18]

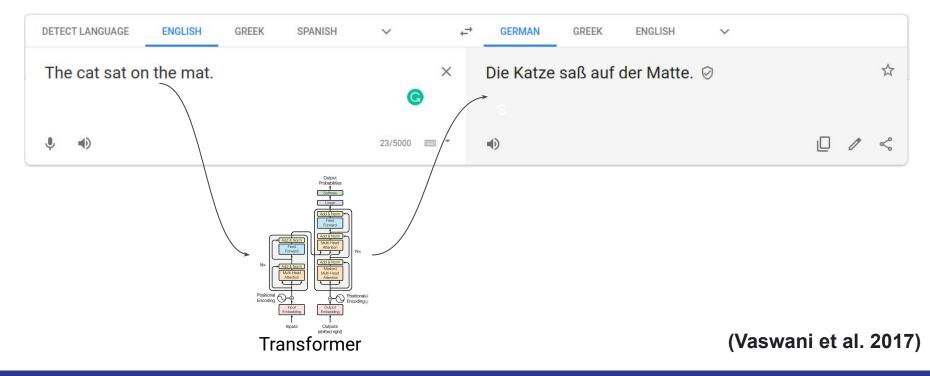
Multilingual transfer [IJNLP'17,TACL'19]

Structural comparisons [EMNLP'20]

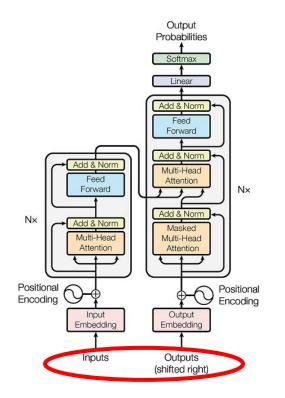
Promoting data efficiency

Deep word sharing [WMT'18;TACL'19;ICML'19]

Grounding to lexicons [EMNLP'20] 3

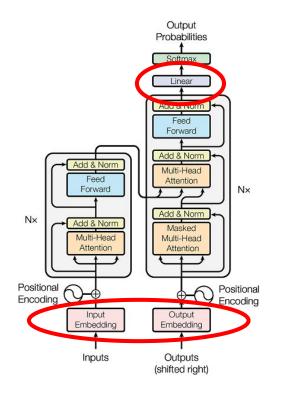

Reducing cost

Model design [ICLR subm.]

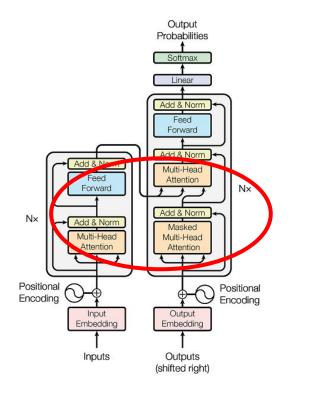

Training objectives [EMNLP'20]

Scalable components [ICML'20, ICLR subm.]

Transformer origins



Limitations: Narrow context

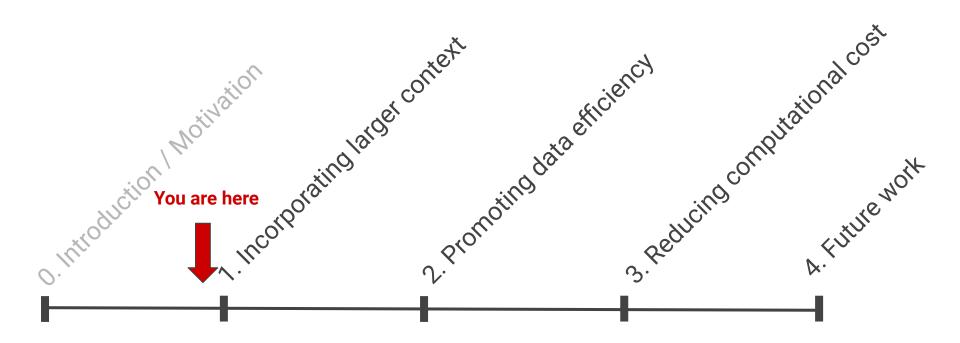

- Fixed and narrow context for prediction
- Suboptimal for document tasks

Limitations: Rigid parameterization

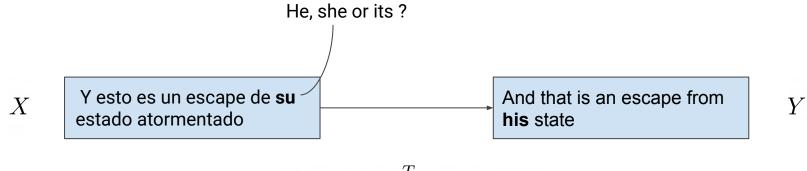
- Dominates model size
- Performs poorly on rare types (data hungry)
- Requires ungraceful changes for adaptation

Limitations: Quadratic complexity

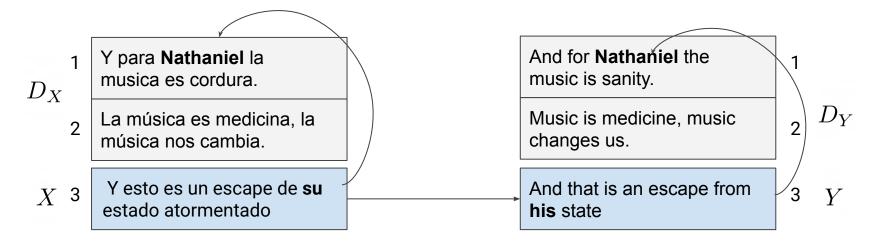
- Does not scale to long text sequences
- Wastes memory for parallelization
- Slow for autoregressive inference


Overview

Objective: show ways to address these challenges in neural MT

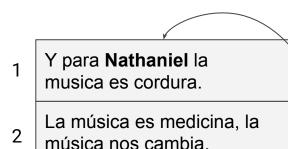

- 1. Dynamic hierarchical attention [EMNLP 2018]
- 2. Deep word sharing and grounding [ICML 2019;EMNLP 2020]
- **3.** Random feature attention [ICLR subm.]

Overview



Sentence-level translation

$$P(Y|X) = \prod_{t=1}^{T} p(y_t|y_{< t}, X)$$


Extra-sentential context to the rescue

$$P(Y|X) = \prod_{t=1}^{T} p(y_t|y_{< t}, X, D_X, D_Y)$$

Sentence context 📃 Extra-sentential context

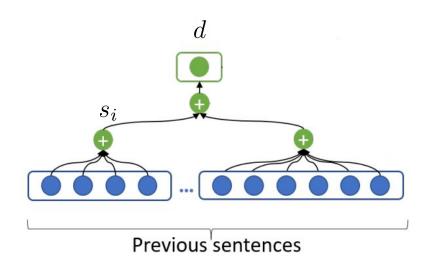
Previous efforts

Y esto es un escape de **su** estado atormentado

3

- Concatenation (Tiedemann & Scherrer, 2017)
- Additional attention (Jean et al., 2017)
- Hierarchical context (Wang et al., 2017)
- Continuous cache (Tue et al., 2018)
- ... and many other recently (Voita et al., 2018; Lopes et al., 2020; Liu et al., 2020; Yu et al., 2020)

Dynamic hierarchical context [EMNLP 2018]

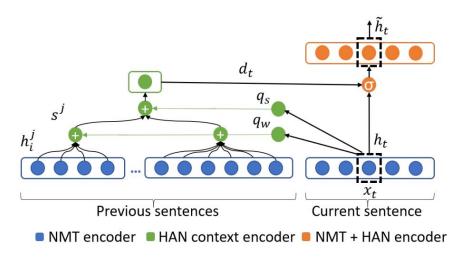

- Exploit source and target document context
- Compute a dynamic document context for each token
- Increased interpretability in the attention maps

Currently Translated Sentence

Src.:	y esto es un escape de su estado atormentado .					
Ref.	and that is an escape from his tormented state.					
Base	e: and this is an escape from $its < unk > state$.					
Cache: and this is an escape from their state .						
HAN	N: and this is an escape from $his < unk > state$.					
Context from Previous Sentences						
HA	N decoder context with target. Query: his (En)					
s ^{t-3}	music is medicine . music changes us .					
s ^{t-2}	and for Nathaniel , music is mine .					
	because music allows him to take his thoughts and his					
s ^{t-1}	delusions and turn through his imagination and his creat					
	ivity actually .					
HA	N encoder context with source. Query: su (Es)					
s ^{t-3}	la música es medicina . la música nos cambia .					
s ^{t-2}	y para Nathaniel la música es cordura .					
	porque la música le permite tomar sus pensamientos y					
s ^{t-1}	sus delirios y transformarlos a través de su imaginació					
	n y su creatividad en realidad .					
	a 					

Lesly Miculicich, Dhananjay Ram, Nikolaos Pappas and James Henderson, Document-Level Neural Machine Translation with Hierarchical Attention Networks, EMNLP 2018.

Hierarchical attention


- Encoding with recurrent networks
- Pooling based on attention with a "learned context" per level

$$a_i = \frac{\exp(s_i^\top u_s)}{\sum_j \exp(s_j^\top u_s)}$$

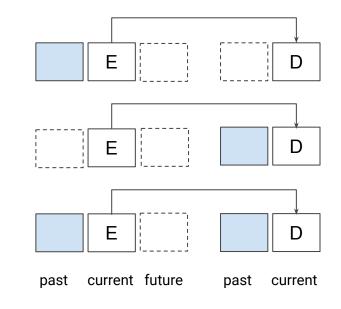
 $d = \sum_{i} \alpha_i s_i$

(Yang et al., 2017)

Dynamic hierarchical attention [EMNLP 2018]

- Encoding with transformer s
- Pooling based on multi-head attention conditioned on encoded tokens

$$q_s = f_s(h_t)$$


$$d_t = \operatorname{FFN}(\operatorname{MultiHead}(q_s, s^j))$$

Context gating $\lambda_t = \sigma(W_h h_t + W_d d_t)$ $\widetilde{h}_t = \lambda_t h_t + (1 - \lambda_t) d_t$

Document machine translation

- Document evaluation metrics
 - Noun/Pronoun accuracy
 - Lexical coherence: metric-based (LSA)
 - Lexical cohesion: repeated/total
- Datasets with document boundaries

TED	Talks	Subt	News	
Zh-En	Es-En	Zh-En	Es-En	Es-En
0.2M	0.2M	2.2M	4.0M	0.2M

Sentence-level results

	TED Talks		Subtitles		News	
	Zh-En	Es-En	Zh–En	Es-En	Es-En	
NMT transformer	16.87	35.44	28.60	35.20	21.36	
	17.32 ***			35.49	22.36 *** [
+ HAN encoder	17.61 ***	36.91 ***	29.35 [*] _†	35.96 [*] _†	22.36 ***	Higher is better
$+$ HAN decoder _	17.39 ***	37.01 ***	29.21 *	35.50	22.62 ***	
+ HAN joint		and the second				
BLELL scores. Significance with respect to NMT + and to cache model +						

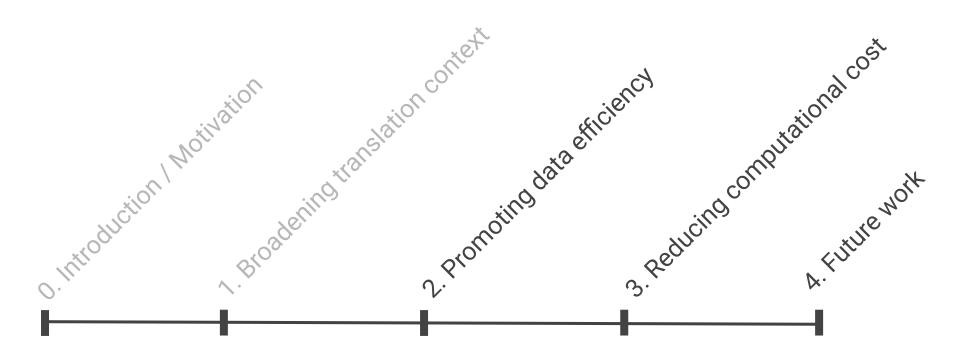
BLEU scores. Significance with respect to NMT *, and to cache model \dagger .

- Significant improvement on different size datasets (up to 4M)
- Target and source context are complementary

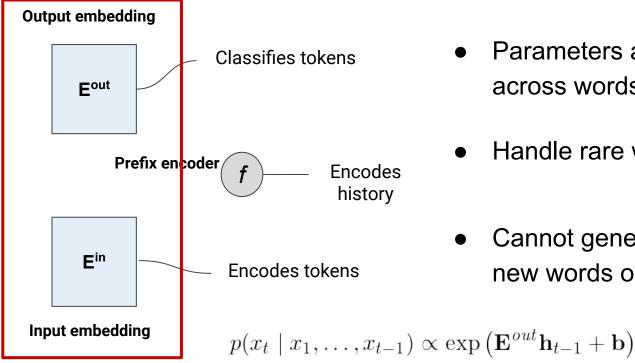
Discourse-level results

	Coherence	Lexical Cohesion	Pronouns	Nouns	
NMT transformer	28.42	47.98	62.84	52.50	
+ HAN encoder	28.60	48.35	64.48	53.61	
+ HAN decoder	28.78	48.51	64.04	53.55	Higher is better
+ HAN joint	28.82	48.61	64.32	54.19	
Human reference	29.79	52.94	100.0	100.0	

- Gains across the board especially for noun/pronoun translation
- Still a big gap between human reference and translations


Takeaways [EMNLP 2018]

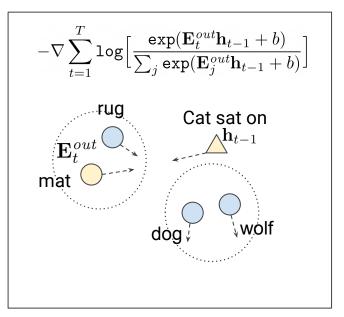
- Incorporating larger context with dynamic hierarchical attention
- Improves both sentence and discourse evaluation metrics
- Provides interpretability in the attention maps for each token


Currently Translated Sentence

 Src.: y esto es un escape de su estado atormentado . Ref.: and that is an escape from his tormented state . Base: and this is an escape from <i>its</i> < <i>unk</i> > state . Cache: and this is an escape from <i>their</i> state . HAN: and this is an escape from his < <i>unk</i> > state . Context from Previous Sentences HAN decoder context with target. <i>Query</i>: his (En) stand for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) stand música es medicina . la música nos cambia . stand su porque la música le permite tomar sus pensamientos y su creatividad en realidad 						
 Base: and this is an escape from <i>its</i> < unk > state. Cache: and this is an escape from <i>their</i> state. HAN: and this is an escape from his < unk > state. Context from Previous Sentences HAN decoder context with target. <i>Query</i>: his (En) stand for Nathaniel , music changes us . and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) stand nuísica es medicina . la música nos cambia . stand su porque la música le permite tomar sus pensamientos y sus delirios y transformarlos a través de su imaginació 	Src.: y esto es un escape de su estado atormentado .					
Cache: and this is an escape from <i>their</i> state . HAN: and this is an escape from his < <i>unk</i> > state . Context from Previous Sentences HAN decoder context with target. <i>Query</i> : his (En) ^{st3} music is medicine . music changes us . and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i> : su (Es) ^{st3} la música es medicina . la música nos cambia . ^{st2} y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y sus delirios y transformarlos a través de su imaginació						
HAN: and this is an escape from his < unk > state . Context from Previous Sentences HAN decoder context with target. Query: his (En) sta music is medicine . music changes us . and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. Query: su (Es) sta la música es medicina . la música nos cambia . sta porque la música le permite tomar sus pensamientos y sta sta	Base: and this is an escape from $its < unk > state$.					
Context from Previous Sentences HAN decoder context with target. <i>Query</i> : his (En) ^{st3} music is medicine . music changes us . and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i> : su (Es) ^{st3} la música es medicina . la música nos cambia . ^{st2} y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y sus delirios y transformarlos a través de su imaginació	•					
 HAN decoder context with target. <i>Query</i>: his (En) ^{s13} music is medicine . music changes us . and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) s13 la música es medicina . la música nos cambia . s14 y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y s14 	HAN: and this is an escape from $his < unk > state$.					
 s¹³ music is medicine . music changes us . and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) s¹³ Ia música es medicina . Ia música nos cambia . s¹⁴ y para Nathaniel Ia música es cordura . porque Ia música le permite tomar sus pensamientos y su delirios y transformarlos a través de su imaginació 	Context from Previous Sentences					
 s¹² and for Nathaniel , music is mine . because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) s¹³ la música es medicina . la música nos cambia . s¹⁴ y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y sus delirios y transformarlos a través de su imaginació 	HAN decoder context with target. Query: his (En)					
 because music allows him to take his thoughts and his delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) s¹³ la música es medicina . la música nos cambia . s¹² y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y sus delirios y transformarlos a través de su imaginació 	sta music is medicine . music changes us .					
 st¹ delusions and turn through his imagination and his creat ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) st³ la música es medicina . la música nos cambia . st² y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y sus delirios y transformarlos a través de su imaginació 	s ^{t2} and for Nathaniel , music is mine .					
 ivity actually . HAN encoder context with source. <i>Query</i>: su (Es) s^{k3} la música es medicina . la música nos cambia . s^{k2} y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y s^{k1} sus delirios y transformarlos a través de su imaginació 						
HAN encoder context with source. <i>Query</i> : su (Es) s ^{t3} la música es medicina . la música nos cambia . s ^{t2} y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y s ^{t1} sus delirios y transformarlos a través de su imaginació	delusions and turn through his imagination and his creat					
 st³ la música es medicina . la música nos cambia . s^{t2} y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y s^{t1} sus delirios y transformarlos a través de su imaginació 	ivity actually .					
 s¹² y para Nathaniel la música es cordura . porque la música le permite tomar sus pensamientos y s¹⁴ sus delirios y transformarlos a través de su imaginació 	HAN encoder context with source. Query: su (Es)					
porque la música le permite tomar sus pensamientos y s ^{t-1} sus delirios y transformarlos a través de su imaginació	s ¹³ la música es medicina . la música nos cambia .					
st1 sus delirios y transformarlos a través de su imaginació	s ^{t-2} y para Nathaniel la música es cordura .					
n v su creatividad en realidad	s ^{t1} sus delirios y transformarlos a través de su imaginació					
in y su oreannad en realidad .	n y su creatividad en realidad .					

Overview

Decoder language model

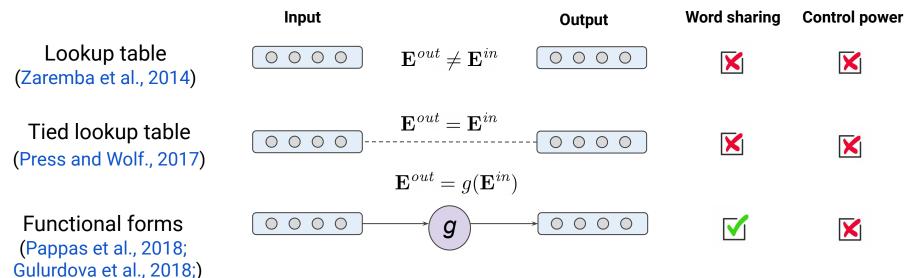


- Parameters are not shared across words
- Handle rare words poorly

Cannot generalize well to new words or domains

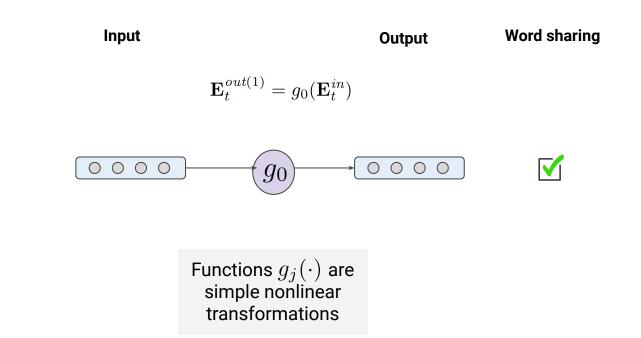
Word sharing

- Captures better the output space similarity
- Influences word neighbors during a training update

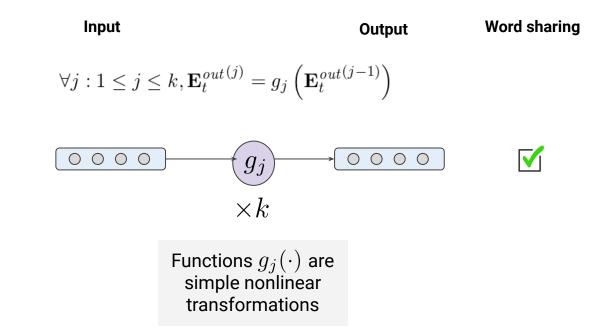

Net effect of training signal

(Pappas et al., 2018)

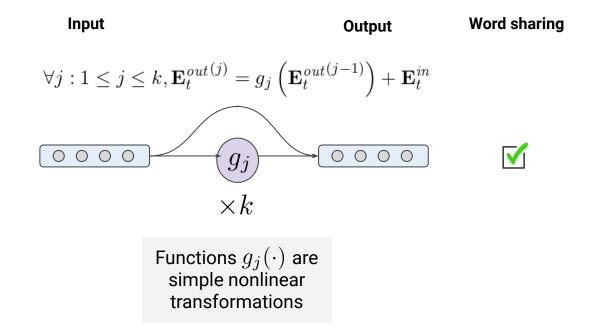
Representing words


Bilinear

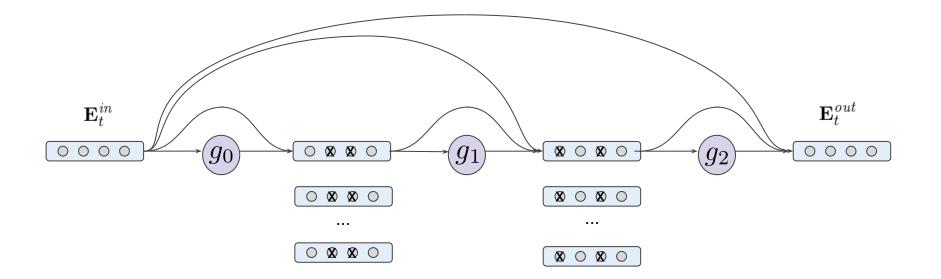
Dual nonlinear


 Increase power only via dim or rank which has the tendency to overfit in certain domains

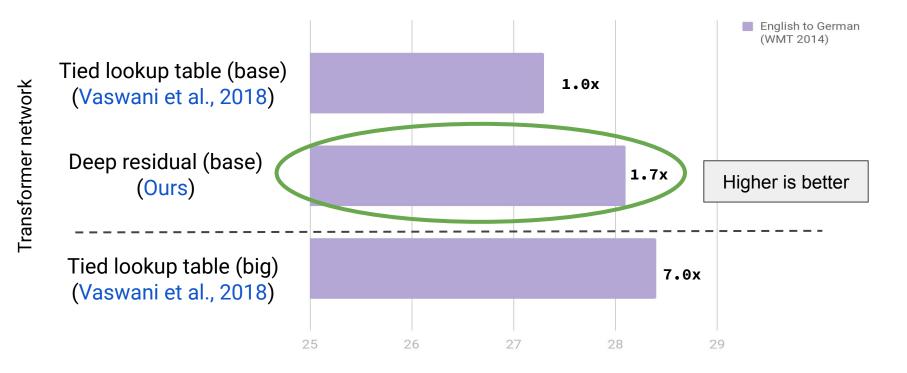
Deep word sharing [ICML 2019]


Nikolaos Pappas, James Henderson, Deep Residual Output Layers for Neural Language Generation, ICML 2019.

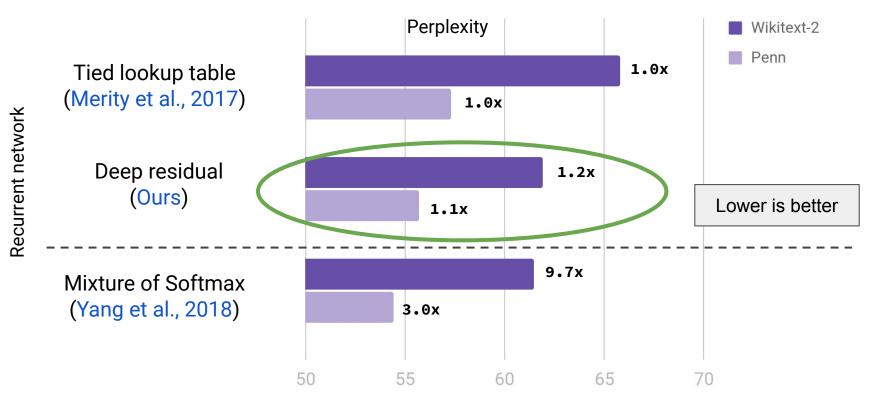
Deep word sharing [ICML 2019]


Nikolaos Pappas, James Henderson, Deep Residual Output Layers for Neural Language Generation, ICML 2019.

Deep word sharing [ICML 2019]

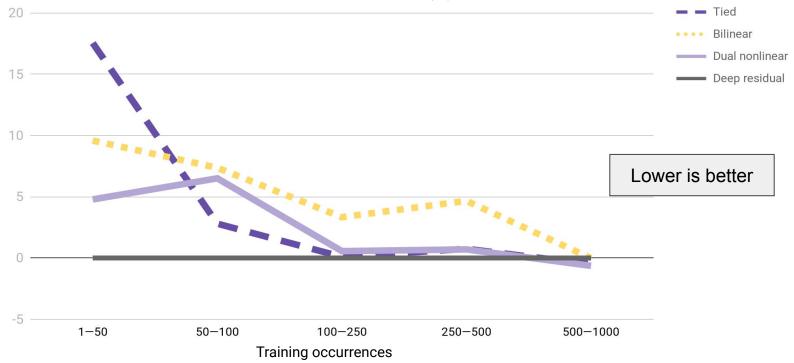

Nikolaos Pappas, James Henderson, Deep Residual Output Layers for Neural Language Generation, ICML 2019.

Unfolded version with depth k = 3



(Merity et al., 2017)

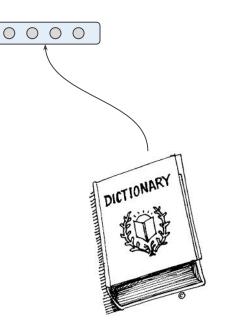
Machine translation



Language modeling

Break down by frequency

Relative NLL difference (%)



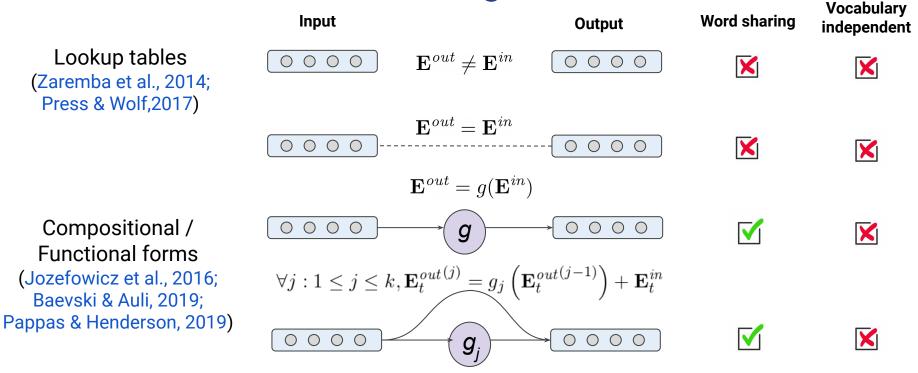
Takeaways [ICML 2019]

- Deep word sharing improves speed-quality tradeoff
- Improvement is due to better modeling low-frequency words

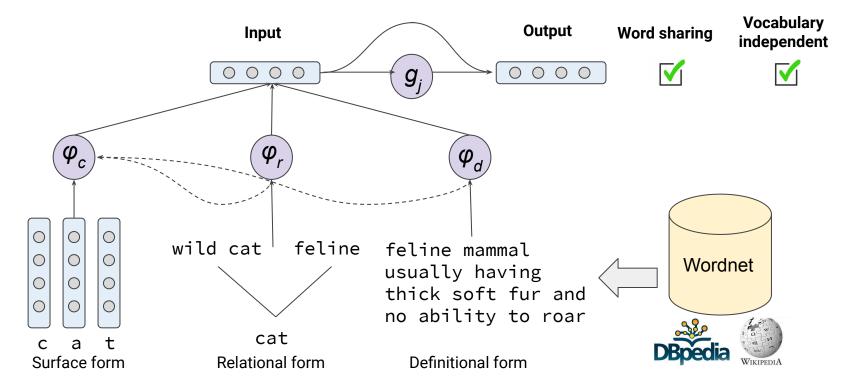
Can we further gain by grounding to dictionaries and relaxing the vocabulary assumptions?

Handling rare or new words

Character-level models (Cherry et al., 2018; Al-Rfou et al., 2019)

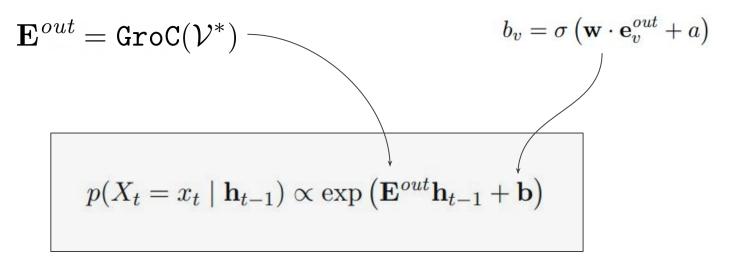

K Costly prefix encoders and training

- Data-driven vocabulary selection (Sennrich et al., 2016; Radford et al., 2018)
 - **K** Linguistically simplistic
 - **K** Rely on lookup tables
- Local neural cache (Graves et al., 2017a,b)



Low-cost adaptation to rare/new words

Related work: Word sharing


Grounded compositional outputs [EMNLP 2020]

Nikolaos Pappas, Phoebe Mulcaire, Noah A. Smith, Grounded Compositional Outputs for Adaptive Language Modeling, EMNLP 2020.

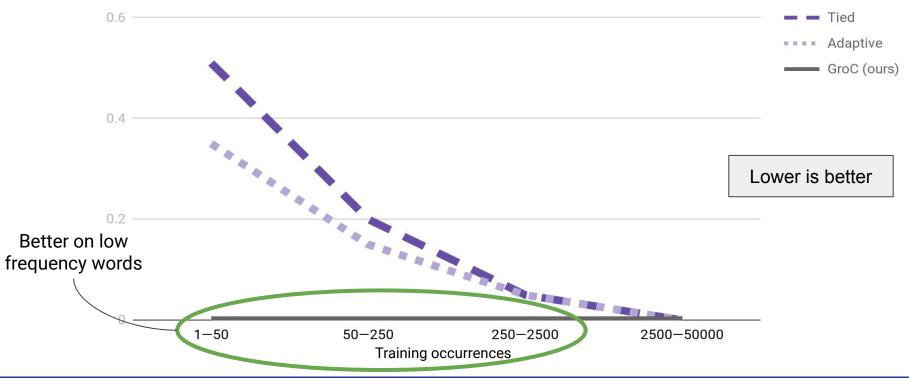
Adapting to any vocabulary [EMNLP 2020]

 We first represent the vocabulary with GroC • Then we estimate the bias for each word *u*

Conventional language modeling

Perplexity Wikitext-2 Penn Lower is better 60 80 90 100

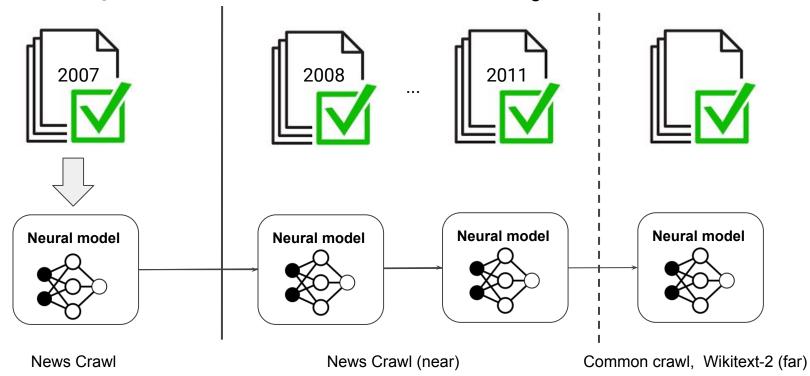
Tied lookup table (Press and Wolf., 2017)

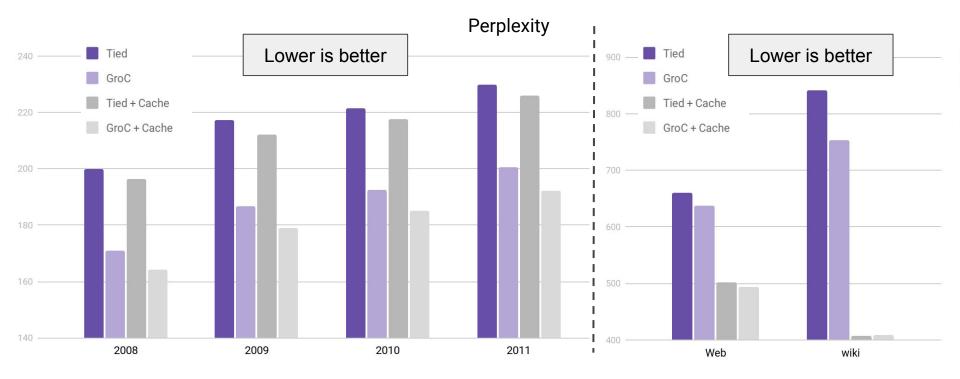

Deep residual network (Pappas et al., 2019)

Adaptive embeddings (Baevski & Auli, 2019)

GroC (Ours)

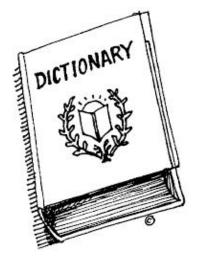
Break down by frequency

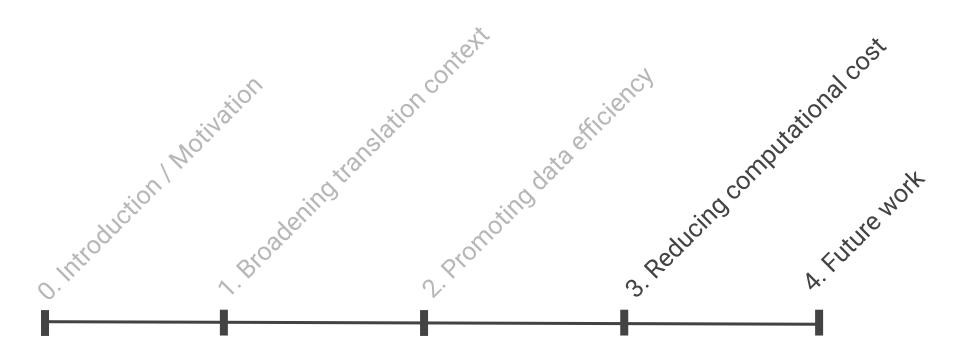

Median NLL difference


Cross-domain modeling: Zero resources

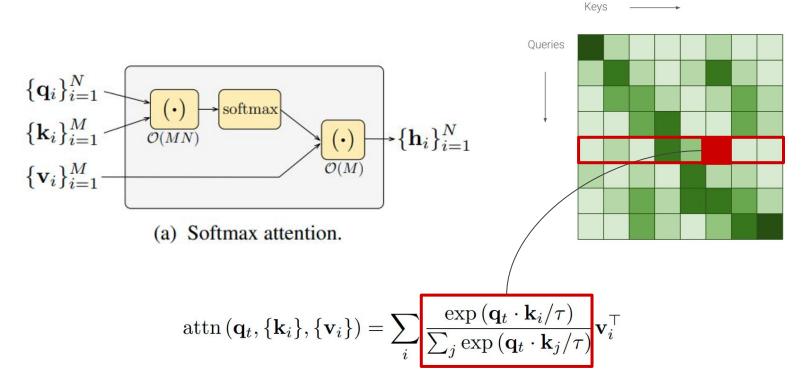
Training

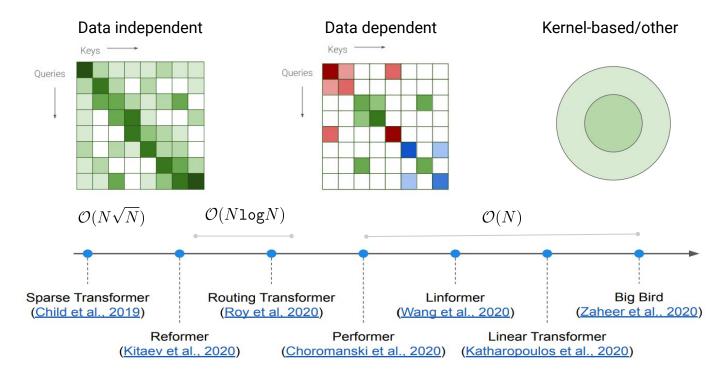
Testing


Cross-domain modeling: Zero resources


Takeaways [EMNLP 2020]

Grounded compositional word sharing


- Creates a compact representation of any vocabulary
- Achieves low perplexity on rare or new words
- Generalizes well to previously unseen domains


Overview

Softmax attention

Recent progress

* Ilharco et al., High-performance NLP tutorial, EMNLP 2020

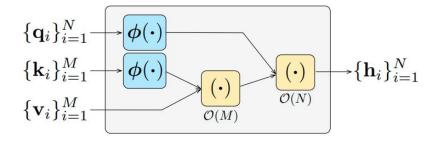
Results so far

Model / Paper	Complexity	Decode
Memory Compressed [†] (Liu et al., 2018)	$\mathcal{O}(n_c^2)$	\checkmark
Image Transformer [†] (Parmar et al., 2018)	$\mathcal{O}(n.m)$	\checkmark
Set Transformer ^{\dagger} (Lee et al., 2019)	$\mathcal{O}(nk)$	×
Transformer-XL ^{\dagger} (Dai et al., 2019)	$\mathcal{O}(n^2)$	\checkmark
Sparse Transformer (Child et al., 2019)	$\mathcal{O}(n\sqrt{n})$	\checkmark
Reformer ^{\dagger} (Kitaev et al., 2020)	$\mathcal{O}(n\log n)$	\checkmark
Routing Transformer (Roy et al., 2020)	$\mathcal{O}(n\log n)$	\checkmark
Axial Transformer (Ho et al., 2019)	$\mathcal{O}(n\sqrt{n})$	\checkmark
Compressive Transformer ^{\dagger} (Rae et al., 2020)	$\mathcal{O}(n^2)$	\checkmark
Sinkhorn Transformer ^{\dagger} (Tay et al., 2020b)	$\mathcal{O}(b^2)$	\checkmark
Longformer (Beltagy et al., 2020)	$\mathcal{O}(n(k+m))$	\checkmark
ETC (Ainslie et al., 2020)	$\mathcal{O}(n_q^2 + nn_g)$	×
Synthesizer (Tay et al., 2020a)	$\mathcal{O}(n^2)$	\checkmark
Performer (Choromanski et al., 2020)	$\mathcal{O}(n)$	\checkmark
Linformer (Wang et al., 2020b)	$\mathcal{O}(n)$	X
Linear Transformers [†] (Katharopoulos et al., 2020)	$\mathcal{O}(n)$	~
Big Bird (Zaheer et al., 2020)	$\mathcal{O}(n)$	X

Faster inference on CIFAR10

Higher accuracy on long sequence tasks

- Lower perplexity on LM with longer context


- Transformers can be more memory and compute efficient
- Benefits mostly when they are trained on longer sequences
- Evaluation is often tricky

(Tay et al., 2020)

Random feature attention (in a nutshell) [ICLR subm.]

☑ Unbiased approximation of softmax attention

- 2X faster on MT decoding
- 17X faster on LM decoding
- 5X faster on long text classification
- Realistic speed/quality estimates
 - Moderate and long sequence tasks
 - Measurements with fixed batch size

$$\mathsf{RFA}\left(\mathbf{q}_{t}, \{\mathbf{k}_{i}\}, \{\mathbf{v}_{i}\}\right) = \frac{\boldsymbol{\phi}\left(\mathbf{q}_{t}\right)^{\top} \sum_{i} \boldsymbol{\phi}\left(\mathbf{k}_{i}\right) \otimes \mathbf{v}_{i}}{\boldsymbol{\phi}\left(\mathbf{q}_{t}\right) \cdot \sum_{j} \boldsymbol{\phi}\left(\mathbf{k}_{j}\right)}$$

 \checkmark New insights on how to improve attention

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, Linkpeng Kong, Random feature attention, ICLR subm.

Random Fourier features

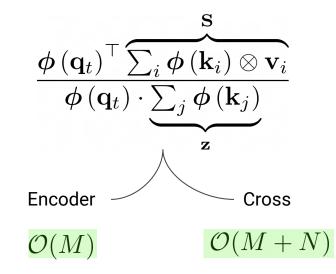
- Can approximate a desired shift-invariant kernel e.g. Gaussian or Arccos
- Let $\boldsymbol{\phi} : \mathbb{R}^d \to \mathbb{R}^{2D}$ be a nonlinear transformation and $w_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$. $\boldsymbol{\phi}(\mathbf{x}) = \sqrt{1/D} \Big[\sin(\mathbf{w}_1 \cdot \mathbf{x}), \dots, \sin(\mathbf{w}_D \cdot \mathbf{x}), \cos(\mathbf{w}_1 \cdot \mathbf{x}), \dots, \cos(\mathbf{w}_D \cdot \mathbf{x}) \Big]^{\top}$

then it provides an unbiased approximation of Gaussian kernel

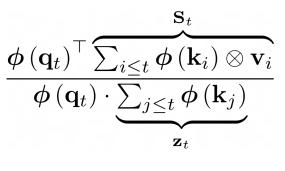
$$\exp(-||\mathbf{x} - \mathbf{y}||^2 / 2\sigma^2) \approx \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$$
 (1)

(Rahimi & Recht, 2008)

Random feature attention [ICLR subm.]

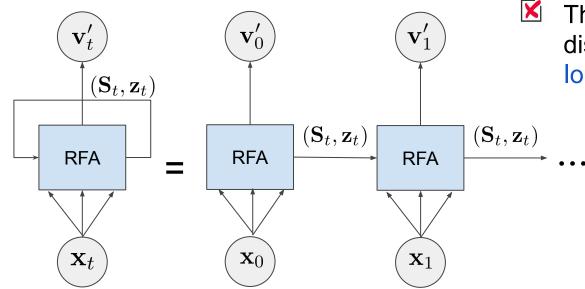

- Exponential becomes Gaussian if x, y are normalized (Rawat et al., 2019) $\exp(x \cdot y/\sigma^2) = \exp(1/\sigma^2)\exp(-||x - y||^2/2\sigma^2)$
 - Therefore RFA is derived as follows $\operatorname{attn} (\mathbf{q}_{t}, \{\mathbf{k}_{i}\}, \{\mathbf{v}_{i}\}) = \sum_{i} \frac{\exp\left(\mathbf{q}_{t} \cdot \mathbf{k}_{i} / \sigma^{2}\right)}{\sum_{j} \exp\left(\mathbf{q}_{t} \cdot \mathbf{k}_{j} / \sigma^{2}\right)} \mathbf{v}_{i}^{\top}$ $\stackrel{(1)}{\approx} \sum_{i} \frac{\phi\left(\mathbf{q}_{t}\right)^{\top} \phi\left(\mathbf{k}_{i}\right) \mathbf{v}_{i}^{\top}}{\sum_{j} \phi\left(\mathbf{q}_{t}\right) \cdot \phi\left(\mathbf{k}_{j}\right)}$ $= \frac{\phi\left(\mathbf{q}_{t}\right)^{\top} \sum_{i} \phi\left(\mathbf{k}_{i}\right) \otimes \mathbf{v}_{i}}{\phi\left(\mathbf{q}_{t}\right) \cdot \sum_{j} \phi\left(\mathbf{k}_{j}\right)} = \operatorname{RFA}\left(\mathbf{q}_{t}, \{\mathbf{k}_{i}\}, \{\mathbf{v}_{i}\}\right)$

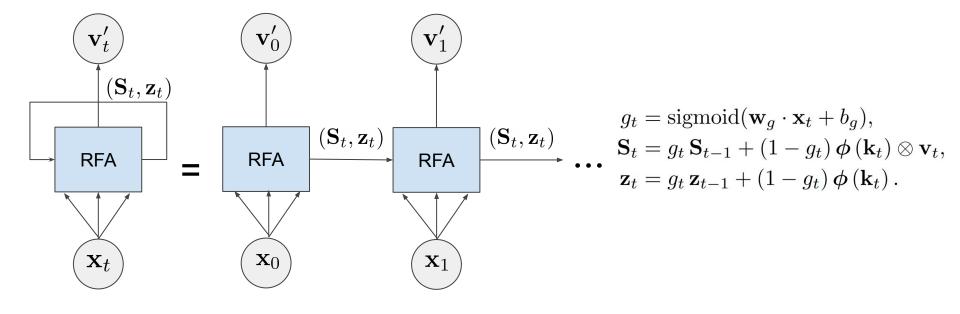
Random feature attention [ICLR subm.]


Exponential becomes Gaussian if x, y are normalized (Rawat et al., 2019) $\exp(x \cdot y/\sigma^2) = \exp(1/\sigma^2)\exp(-||x-y||^2/2\sigma^2)$ — temperature — Therefore RFA is derived as follows Reparameterization trick attn $(\mathbf{q}_t, {\mathbf{k}_i}, {\mathbf{v}_i}) = \sum_i \frac{\exp\left(\mathbf{q}_t \cdot \mathbf{k}_i / \sigma^2\right)}{\sum_j \exp\left(\mathbf{q}_t \cdot \mathbf{k}_j / \sigma^2\right)} \mathbf{v}_i^{\top}$ $\widetilde{\mathbf{w}}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d),$ $\mathbf{w}_i = \boldsymbol{\sigma} \circ \mathbf{w}_i.$ $\approx \sum_{i} \frac{\phi(\mathbf{q}_{t})^{\top} \boldsymbol{\phi}(\mathbf{k}_{i})}{\sum_{j} \boldsymbol{\phi}(\mathbf{q}_{t}) \cdot \boldsymbol{\phi}(\mathbf{k}_{j})}$ (Kingma & Welling, 2014) $=\frac{\phi\left(\mathbf{q}_{t}\right)^{\top}\sum_{i}\phi\left(\mathbf{k}_{i}\right)\otimes\mathbf{v}_{i}}{\phi\left(\mathbf{q}_{t}\right)\cdot\sum_{i}\phi\left(\mathbf{k}_{i}\right)}=\operatorname{RFA}\left(\mathbf{q}_{t},\left\{\mathbf{k}_{i}\right\},\left\{\mathbf{v}_{i}\right\}\right)$

RFA variants [ICLR subm.]

• Non-causal: we compute S, z only once for the whole sequence


• **Causal**: we compute St and zt iteratively at each step


Recurrent formulation [ICLR subm.]

There is no explicit modeling of distance or locality (Katharopoulos et al., 2020)

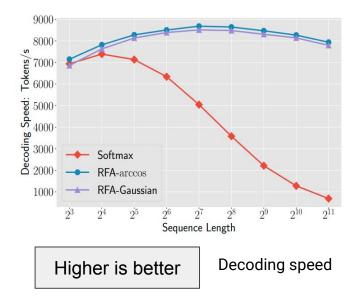
$$egin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + oldsymbol{\phi}\left(\mathbf{k}_t
ight) \otimes \mathbf{v}_t \ \mathbf{z}_t &= \mathbf{z}_{t-1} + oldsymbol{\phi}\left(\mathbf{k}_t
ight) \end{aligned}$$

Gated-RFA: Learning with recency bias [ICLR subm.]

Machine translation

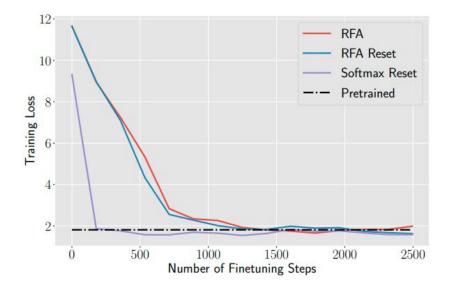
WMT14		IWSLT14		
EN-DE	EN-FR	DE-EN	Speed	
28.1	<u>39.0</u>	34.6	$1.0 \times$	
21.3	34.0	29.9	$2.0 \times$	Lliphor is bottor
28.0 28.1	39.2 38.9	34.5 34.4	$1.8 \times$ $1.9 \times$	Higher is better
28.1 28.2	39.0 39.2	34.6 34.4	$1.8 \times$ $1.9 \times$	
	EN-DE 28.1 21.3 28.0 28.1 28.1	EN-DEEN-FR28.139.021.334.028.039.228.138.928.139.0	EN-DEEN-FRDE-EN28.139.034.621.334.029.928.039.234.528.138.934.428.139.034.6	EN-DEEN-FRDE-ENSpeed28.139.034.61.0×21.334.029.92.0×28.039.234.51.8×28.138.934.41.9×28.139.034.61.8×

BLEU scores on MT.


- Double the speed for short sequences with similar quality (2X speedup)
- Superiority to linear transformer shows the importance of feature map

Language modeling

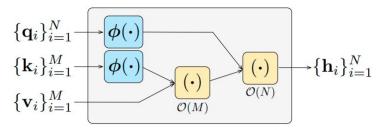
Lower is better


	Small		Big	
Model	Dev.	Test	Dev.	Test
BASE	33.0	34.5	24.5	26.2
$\overline{\phi_{ ext{elu}}}$ (Katharopoulos et al., 2020)	38.4	40.1	28.7	30.2
RFA-Gaussian RFA-arccos	33.6 36.0	35.7 37.7	25.8 26.4	27.5 28.1
RFA-GATE-Gaussian RFA-GATE-arccos	31.3 32.8	32.7 34.0	23.2 24.8	25.0 26.3
RFA-GATE-Gaussian-Stateful	29.4	30.5	22.0	23.5

Perplexity on Wikitext-103.

- RFA-gate is better than baseline with up to 17X decoding speed
- Competitive speed-quality tradeoff in the long range arena (5X speedup)

"Streamlining" pretrained models



Finetuning RFA from a pretrained softmax model.

- Pretrained softmax parameters are as useful as random ones
- RFA can recover the pretraining loss with a few iterations
- Potential to reduce finetuning cost for large models (GPT3)

Takeaways [ICLR subm.]

- General component with linear complexity for attending sequences
- Competitive trade-offs on both long and moderate length sequences
- New scalable attention variant that learns with recency bias

Random feature attention.

Acknowledgments

L. Miculicich

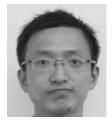
D. Ram

J. Henderson

n A. Popescu-Belis

N. A. Smith

H. Peng


P. Mulcaire

D. Yogatama

R. Schwartz

L. Kong

Thank you!