

Sentiment Analysis of User Comments for One-Class Collaborative Filtering

Nikolaos Pappas^{1,2}, Andrei Popescu-Belis¹ {nikolaos.pappas,andrei.popescu-belis}@idiap.ch ¹Idiap Research Institute, ²École Polytechnique Fédérale de Lausanne

Motivation

Context:

- \rightarrow user feedback expressed as unary values (e.g. favorites)
- \rightarrow lack of a **negative** class
- \rightarrow no feedback = not seen *or* not liked?

Objective

- \rightarrow improve one-class collaborative filtering (CF)
- \rightarrow extract preference information from user comments

 \rightarrow enrich user preference model through sentiment analysis

"She is very true in saying that mistakes are part of learning." (*sentiment*=pos, *polarity*=+5.5)

Sentiment Analysis

 \rightarrow out-of-the-box rule-based (RB) sentiment classifier from [1] \rightarrow human study with 6 subjects over TED comments <u>**Results**</u>:

 \rightarrow quality sufficient to improve one-class CF task

 \rightarrow 260 sentences and 135 comments (0.83 and 0.65 k score, substantial)

 \rightarrow 76.20% F1 compared to 54.63% for random classifier

One-Class Collaborative Filtering

Find missing ratings in user-item matrix $R(|U| \times |I|)$, with $r_{ui} = 1$ indicating an 'action' (positive feedback) [2, 3]. **Neighborhood Models:**

$$\hat{r}_{ui} = b_{ui} + \frac{\sum_{j \in D^k(u;i)} d_{ij}(r_{uj} - b_{uj})}{\sum_{i \in D^k(u;i)} d_{ii}}; \ d_{ij} = s_{ij} \frac{n_{ij}}{n_{ii} + \lambda}; \ b_{ui} = \mu + b_u + b_i$$
(1)

Evaluation on Training Set

 \rightarrow optimizing for best combination of k, λ and similarity s_{ij} \rightarrow consistent improvement of SANN over NN

Effect of neighborhood size k~~ Effect of shrinking factor λ

 s_{ij} : similarity of item *i* and *j*, n_{ij} : common raters of *i* and *j*, λ : shrinking factor, b_{ui} : bias user *u* and item *j* estimate, $D^k(u;i)$: the neighborhood of size *k* of the most similar items in users *u* history to item *i*.

Sentiment-Aware Nearest Neighbors (SANN)

SANN model integrates preference information from text by **mapping** the sentiment scores of the text to preference ratings.

$$\hat{r}_{ui} = b_{ui} + \sum_{j \in D_c^k(u;i)} d_{ij}(r'_{uj} - b_{uj}), \quad r'_{uj} = \begin{cases} 1, & \text{if } r_{uj} = 1\\ c_{uj}, & \text{if } r_{uj} \neq 1 \end{cases}$$
(2)

 $\rightarrow c_{uj} = sign_{rand}(C_j): \text{ output of a random classifier (randSANN)}$ $\rightarrow c_{uj} = sign_{RB}(C_j): \text{ discrete output of RB classifier (SANN)}$ $\rightarrow c_{uj} = 1 + z_j \cdot \sum_{s \in C_j} (pol_{RB}(s)/|s|): \text{ numeric output of RB classifier (polSANN)}$

 c_{uj} : inferred rating of user u to item i, Cj: user comment on item j, s: sentence, pol_{RB} : polarity output of RB classifier, z_j : normalization factor

TED Dataset and Evaluation Protocol

Results on Held-Out Sets

	Dense held-out set			Sparse held-out set		
Methods	MAP	MAR	MAF	MAP	MAR	MAF
TopPopular	3.85	13.52	5.99	3.61	13.48	5.70
NN	5.67	18.07	8.63	5.23	18.06	8.11
randSANN	5.88	17.79	8.84	5.22	17.56	8.05
SANN	6.90	20.72	10.35	5.69	18.85	8.75
polSANN	7.29	22.01	10.95	5.89	19.48	9.04
Improv.	+28.5%	+21.8%	+26.8%	+12.6%	+7.8%	11.4%
Precision vs. Recall Role of comments						
20 18 16 14	TopPopular TopPopular NN(PC) × SANN(PC) + randSANN(PC) * polSANN(PC)		7.5		×× SA ** pc ⊢ NI	ANN(PC) DISANN(PC) N(PC)
					+ * *	XXXX

→ TED (www.ted.com) is an online repository of talks
 → contains user material (120k favorites, 22k comments)
 → we crawled, created and made TED data available (see [4])
 → evaluation on top-50 recommendations with P/R/F1 metrics
 → 80% training with 5-fold cross-validation

 \rightarrow 20% testing with two held-out sets (comment dense and sparse)

References and Material

[1] N. Pappas, G. Katsimpras, and E. Stamatatos, "A system for up-to-date opinion retrieval and mining in the Web," in *CICLing'13*.
[2] P. Cremonesi, Y. Koren, and R. Turrin, "Performance of recommender algorithms on top-N recommendation tasks," in *RecSys'10*.
[3] R. Pan, Y. Zhou, B. Cao, N. Liu, R. Lukose, M. Scholz, and Q. Yang, "One-class collaborative filtering," in *ICDM'08*.
[4] N. Pappas and A. Popescu-Belis, "Combining content with user preferences for TED lecture recommendation," in *CBMI'13*.

ЧЧ 6.0

Conclusions

N)4P(N)

 → sentiment-aware nearest neighbor model outperforms competitive baselines for one-class CF
 → relies on the quality of the sentiment analysis module
 → performance improves with the number of comments

Future work:

 \rightarrow learning to map sentiment scores to ratings \rightarrow incorporate aspect-based information from user comments